Algebraic & Geometric Topology

Hyperbolic groups which fiber in infinitely many ways

TaraLee Mecham and Antara Mukherjee

Full-text: Open access


We construct examples of CAT(0), free-by-cyclic, hyperbolic groups which fiber in infinitely many ways over . The construction involves adding a specialized square 2–cell to a non-positively curved, squared 2–complex defined by labeled oriented graphs. The fundamental groups of the resulting complexes are CAT(0), hyperbolic, free-by-cyclic and can be mapped onto in infinitely many ways.

Article information

Algebr. Geom. Topol., Volume 9, Number 4 (2009), 2101-2120.

Received: 20 December 2008
Accepted: 26 July 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 51H99: None of the above, but in this section

hyperbolic groups fibering


Mecham, TaraLee; Mukherjee, Antara. Hyperbolic groups which fiber in infinitely many ways. Algebr. Geom. Topol. 9 (2009), no. 4, 2101--2120. doi:10.2140/agt.2009.9.2101.

Export citation


  • J Barnard, N Brady, Distortion of surface groups in CAT(0) free-by-cyclic groups, Geom. Dedicata 120 (2006) 119–139
  • M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. $(2)$ 135 (1992) 1–51
  • N Brady, J Crisp, $\mathrm{CAT}(0)$ and $\mathrm{CAT}(-1)$ dimensions of torsion free hyperbolic groups, Comment. Math. Helv. 82 (2007) 61–85
  • M R Bridson, On the existence of flat planes in spaces of nonpositive curvature, Proc. Amer. Math. Soc. 123 (1995) 223–235
  • M R Bridson, A Haefliger, Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Berlin (1999)
  • J O Button, Mapping tori with first Betti number at least two, J. Math. Soc. Japan 59 (2007) 351–370
  • P Eberlein, Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc. 167 (1972) 151–170
  • S M Gersten, J R Stallings, Irreducible outer automorphisms of a free group, Proc. Amer. Math. Soc. 111 (1991) 309–314
  • M Gromov, Hyperbolic groups, from: “Essays in group theory”, Math. Sci. Res. Inst. Publ. 8, Springer, New York (1987) 75–263
  • H M Hilden, M T Lozano, J M Montesinos-Amilibia, On hyperbolic 3–manifolds with an infinite number of fibrations over $S^1$, Math. Proc. Cambridge Philos. Soc. 140 (2006) 79–93
  • J Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 289 (1985) 281–302
  • I J Leary, G A Niblo, D T Wise, Some free-by-cyclic groups, from: “Groups St. Andrews 1997 in Bath, II”, London Math. Soc. Lecture Note Ser. 261, Cambridge Univ. Press, Cambridge (1999) 512–516
  • D A Neumann, 3–manifolds fibering over $S^{1}$, Proc. Amer. Math. Soc. 58 (1976) 353–356
  • P Scott, T Wall, Topological methods in group theory, from: “Homological group theory (Proc. Sympos., Durham, 1977)”, London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press, Cambridge (1979) 137–203
  • J Stallings, On fibering certain 3–manifolds, from: “Topology of 3–manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)”, Prentice-Hall, Englewood Cliffs, N.J. (1962) 95–100
  • W P Thurston, Hyperbolic structures on 3–manifolds II: Surface groups and 3–manifolds that fiber over the circle
  • J L Tollefson, 3–manifolds fibering over $S^{1}$ with nonunique connected fiber, Proc. Amer. Math. Soc. 21 (1969) 79–80