Algebraic & Geometric Topology

On fake lens spaces with fundamental group of order a power of $2$

Tibor Macko and Christian Wegner

Full-text: Open access

Abstract

We present a classification of fake lens spaces of dimension 5 which have as fundamental group the cyclic group of order N=2K, which extends the results of Wall and others in the case N=2.

Article information

Source
Algebr. Geom. Topol., Volume 9, Number 3 (2009), 1837-1883.

Dates
Received: 25 August 2008
Revised: 9 July 2009
Accepted: 30 August 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513797046

Digital Object Identifier
doi:10.2140/agt.2009.9.1837

Mathematical Reviews number (MathSciNet)
MR2550097

Zentralblatt MATH identifier
1220.57020

Subjects
Primary: 57R65: Surgery and handlebodies 57S25: Groups acting on specific manifolds

Keywords
lens space structure set $\rho$–invariant normal invariants surgery

Citation

Macko, Tibor; Wegner, Christian. On fake lens spaces with fundamental group of order a power of $2$. Algebr. Geom. Topol. 9 (2009), no. 3, 1837--1883. doi:10.2140/agt.2009.9.1837. https://projecteuclid.org/euclid.agt/1513797046


Export citation

References

  • M F Atiyah, I M Singer, The index of elliptic operators. III, Ann. of Math. $(2)$ 87 (1968) 546–604
  • P E Conner, E E Floyd, Differentiable periodic maps, Ergebnisse der Math. und ihrer Grenzgebiete 33, Academic Press, New York (1964)
  • I Hambleton, L R Taylor, A guide to the calculation of the surgery obstruction groups for finite groups, from: “Surveys on surgery theory, Vol. 1”, (S Cappell, A Ranicki, J Rosenberg, editors), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 225–274
  • W Lück, A basic introduction to surgery theory, from: “Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001)”, (F T Farrell, L Göttsche, W Lück, editors), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 1–224
  • T Macko, C Wegner, On the classification of fake lens spaces
  • I Madsen, R J Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies 92, Princeton University Press (1979)
  • S López de Medrano, Involutions on manifolds, Ergebnisse der Math. und ihrer Grenzgebiete 59, Springer, New York (1971)
  • J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358–426
  • J W Morgan, D P Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math. $(2)$ 99 (1974) 463–544
  • T Petrie, The Atiyah–Singer invariant, the Wall groups $L\sb{n}(\pi ,\,1)$, and the function $(te\sp{x}+1)/(te\sp{x}-1)$, Ann. of Math. $(2)$ 92 (1970) 174–187
  • A A Ranicki, A composition formula for manifold structures
  • A A Ranicki, Algebraic $L$–theory and topological manifolds, Cambridge Tracts in Math. 102, Cambridge Univ. Press (1992)
  • C T C Wall, Surgery on compact manifolds, second edition, Math. Surveys and Monogr. 69, Amer. Math. Soc. (1999) Edited and with a foreword by A A Ranicki
  • C M Young, Normal invariants of lens spaces, Canad. Math. Bull. 41 (1998) 374–384