Algebraic & Geometric Topology

Symmetric topological complexity of projective and lens spaces

Jesús González and Peter Landweber

Full-text: Open access

Abstract

For real projective spaces, (a) the Euclidean immersion dimension, (b) the existence of axial maps and (c) the topological complexity are known to be three facets of the same problem. But when it comes to embedding dimension, the classical work of Berrick, Feder and Gitler leaves a small indeterminacy when trying to identify the existence of Euclidean embeddings of these manifolds with the existence of symmetric axial maps. As an alternative we show that the symmetrized version of (c) captures, in a sharp way, the embedding problem. Extensions to the case of even-torsion lens spaces and complex projective spaces are discussed.

Article information

Source
Algebr. Geom. Topol., Volume 9, Number 1 (2009), 473-494.

Dates
Received: 15 January 2009
Revised: 18 February 2009
Accepted: 18 February 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796975

Digital Object Identifier
doi:10.2140/agt.2009.9.473

Mathematical Reviews number (MathSciNet)
MR2491582

Zentralblatt MATH identifier
1167.57012

Subjects
Primary: 55M30: Ljusternik-Schnirelman (Lyusternik-Shnirelʹman) category of a space 57R40: Embeddings

Keywords
symmetric topological complexity Euclidean embedding biequivariant map symmetric axial map projective space lens space

Citation

González, Jesús; Landweber, Peter. Symmetric topological complexity of projective and lens spaces. Algebr. Geom. Topol. 9 (2009), no. 1, 473--494. doi:10.2140/agt.2009.9.473. https://projecteuclid.org/euclid.agt/1513796975


Export citation

References

  • J Adem, S Gitler, I M James, On axial maps of a certain type, Bol. Soc. Mat. Mexicana $(2)$ 17 (1972) 59–62
  • L Astey, D M Davis, J González, Generalized axial maps and Euclidean immersions of lens spaces, Bol. Soc. Mat. Mexicana $(3)$ 9 (2003) 151–163
  • M F Atiyah, F Hirzebruch, Quelques théorèmes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France 87 (1959) 383–396
  • A J Berrick, S Feder, S Gitler, Symmetric axial maps and embeddings of projective spaces, Bol. Soc. Mat. Mexicana $(2)$ 21 (1976) 39–41
  • Z D Dai, T Y Lam, Levels in algebra and topology, Comment. Math. Helv. 59 (1984) 376–424
  • D M Davis, Table of immersions and embeddings of real projective spaces Available at \setbox0\makeatletter\@url http://www.lehigh.edu/~dmd1/immtable {\unhbox0
  • D M Davis, A strong nonimmersion theorem for real projective spaces, Ann. of Math. $(2)$ 120 (1984) 517–528
  • M Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211–221
  • M Farber, Instabilities of robot motion, Topology Appl. 140 (2004) 245–266
  • M Farber, Topology of robot motion planning, from: “Morse theoretic methods in nonlinear analysis and in symplectic topology”, (P Biran, O Cornea, F Lalonde, editors), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer, Dordrecht (2006) 185–230
  • M Farber, Invitation to topological robotics, Zurich Lect. in Adv. Math., Eur. Math. Soc., Zürich (2008)
  • M Farber, M Grant, Symmetric motion planning, from: “Topology and robotics”, (M Farber, R Ghrist, M Burger, D Koditschek, editors), Contemp. Math. 438, Amer. Math. Soc. (2007) 85–104
  • M Farber, M Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136 (2008) 3339–3349
  • M Farber, S Tabachnikov, S Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. (2003) 1853–1870
  • J González, Connective $K$–theoretic Euler classes and non-immersions of $2\sp k$–lens spaces, J. London Math. Soc. $(2)$ 63 (2001) 247–256
  • J González, Topological robotics in lens spaces, Math. Proc. Cambridge Philos. Soc. 139 (2005) 469–485
  • A Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962) 155–176
  • A Haefliger, M W Hirsch, Immersions in the stable range, Ann. of Math. $(2)$ 75 (1962) 231–241
  • H Hopf, Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Räume, Vierteljschr. Naturforsch. Ges. Zürich 85 (1940) 165–177
  • W-C Hsiang, R H Szczarba, On the embeddability and nonembeddability of certain parallelizable manifolds, Bull. Amer. Math. Soc. 69 (1963) 534–536
  • A Mukherjee, Embedding complex projective spaces in Euclidean space, Bull. London Math. Soc. 13 (1981) 323–324
  • E Rees, Embedding odd torsion manifolds, Bull. London Math. Soc. 3 (1971) 356–362
  • E Rees, Embeddings of real projective spaces, Topology 10 (1971) 309–312
  • A S Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl., Ser. 2 55 (1966) 49–140
  • T A Shimkus, Some new immersions and nonimmersions of $2\sp r$–torsion lens spaces, Bol. Soc. Mat. Mexicana $(3)$ 9 (2003) 339–357
  • B Steer, On the embedding of projective spaces in Euclidean space, Proc. London Math. Soc. $(3)$ 21 (1970) 489–501
  • T Yasui, The reduced symmetric product of a complex projective space and the embedding problem, Hiroshima Math. J. 1 (1971) 27–40