Algebraic & Geometric Topology

Meridional almost normal surfaces in knot complements

Robin Wilson

Full-text: Open access

Abstract

Suppose K is a knot in a closed 3–manifold M such that MN(K) is irreducible. We show that for any integer n there exists a triangulation of MN(K) such that any weakly incompressible bridge surface for K of n bridges or fewer is isotopic to an almost normal bridge surface.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 3 (2008), 1717-1740.

Dates
Received: 6 October 2007
Accepted: 1 September 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796903

Digital Object Identifier
doi:10.2140/agt.2008.8.1717

Mathematical Reviews number (MathSciNet)
MR2448869

Zentralblatt MATH identifier
1173.57009

Subjects
Primary: 57M99: None of the above, but in this section

Keywords
normal surface Heegaard surface bridge position strongly irreducible weakly incompressible

Citation

Wilson, Robin. Meridional almost normal surfaces in knot complements. Algebr. Geom. Topol. 8 (2008), no. 3, 1717--1740. doi:10.2140/agt.2008.8.1717. https://projecteuclid.org/euclid.agt/1513796903


Export citation

References

  • D Bachman, Heegaard splittings with boundary and almost normal surfaces, Topology Appl. 116 (2001) 153–184
  • D Bachman, Thin position with respect to a Heegaard surface, preprint
  • A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275–283
  • A Coward, Algorithmically detecting the bridge number of hyperbolic knots (2006)
  • C Frohman, The topological uniqueness of triply periodic minimal surfaces in ${\bf R}\sp 3$, J. Differential Geom. 31 (1990) 277–283
  • D Gabai, Foliations and the topology of $3$-manifolds. III, J. Differential Geom. 26 (1987) 479–536
  • W Haken, Theorie der Normalflächen, Acta Math. 105 (1961) 245–375
  • W Jaco, D Letscher, H Rubinstein, One vertex, ideal, and efficient triangulations of 3–manifolds, in preparation
  • W Jaco, J H Rubinstein, $0$–efficient triangulations of 3–manifolds, J. Differential Geom. 65 (2003) 61–168
  • S King, Almost normal Heegaard surfaces (2003)
  • J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for $3$–dimensional manifolds, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 1–20
  • M Scharlemann, A Thompson, Heegaard splittings of $({\rm surface})\times I$ are standard, Math. Ann. 295 (1993) 549–564
  • M Scharlemann, M Tomova, Uniqueness of bridge surfaces for 2–bridge knots, Math. Proc. Cambridge Philos. Soc. 144 (2008) 639–650
  • M Stocking, Almost normal surfaces in $3$–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171–207
  • A Thompson, Thin position and the recognition problem for $S\sp 3$, Math. Res. Lett. 1 (1994) 613–630
  • M Tomova, Multiple bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007) 957–1006