Algebraic & Geometric Topology

On tight contact structures with negative maximal twisting number on small Seifert manifolds

Paolo Ghiggini

Full-text: Open access

Abstract

We study some properties of transverse contact structures on small Seifert manifolds, and we apply them to the classification of tight contact structures on a family of small Seifert manifolds.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 1 (2008), 381-396.

Dates
Received: 10 October 2007
Accepted: 28 November 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796817

Digital Object Identifier
doi:10.2140/agt.2008.8.381

Mathematical Reviews number (MathSciNet)
MR2443233

Zentralblatt MATH identifier
1148.57026

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds 57R17: Symplectic and contact topology

Keywords
transverse contact structure small Seifert manifold $L$–space

Citation

Ghiggini, Paolo. On tight contact structures with negative maximal twisting number on small Seifert manifolds. Algebr. Geom. Topol. 8 (2008), no. 1, 381--396. doi:10.2140/agt.2008.8.381. https://projecteuclid.org/euclid.agt/1513796817


Export citation

References

  • J B Etnyre, Legendrian and transversal knots, from: “Handbook of knot theory”, Elsevier B. V., Amsterdam (2005) 105–185
  • J B Etnyre, K Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63–120
  • D Gay, A Stipsicz, Symplectic rational blow-down along Seifert fibered 3-manifolds
  • P Ghiggini, Tight contact structures on Seifert manifolds over $T\sp 2$ with one singular fibre, Algebr. Geom. Topol. 5 (2005) 785–833
  • P Ghiggini, P Lisca, A I Stipsicz, Classification of tight contact structures on small Seifert 3-manifolds with $e\sb 0\geq 0$, Proc. Amer. Math. Soc. 134 (2006) 909–916
  • P Ghiggini, P Lisca, A I Stipsicz, Tight contact structures on some small Seifert fibered 3-manifolds, Amer. J. Math. 129 (2007) 1403–1447
  • E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637–677
  • E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615–689
  • E Giroux, Structures de contact sur les variétés fibrées en cercles audessus d'une surface, Comment. Math. Helv. 76 (2001) 218–262
  • E Giroux, Sur les transformations de contact au-dessus des surfaces, from: “Essays on geometry and related topics, Vol. 1, 2”, (É Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi, editors), Monogr. Enseign. Math. 38, Enseignement Math., Geneva (2001) 329–350
  • K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309–368
  • K Honda, On the classification of tight contact structures. II, J. Differential Geom. 55 (2000) 83–143
  • K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435–478
  • P Lisca, G Matić, Stein $4$-manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55–66 Symplectic, contact and low-dimensional topology (Athens, GA, 1996)
  • P Lisca, G Matić, Transverse contact structures on Seifert 3-manifolds, Algebr. Geom. Topol. 4 (2004) 1125–1144
  • P Lisca, A I Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds, III
  • P Massot, Geodesible contact structures on $3$–manifolds
  • O Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547–561
  • P Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983) 401–487
  • H Wu, Legendrian vertical circles in small Seifert spaces, Commun. Contemp. Math. 8 (2006) 219–246