Algebraic & Geometric Topology

Volume and homology of one-cusped hyperbolic $3$–manifolds

Marc Culler and Peter B Shalen

Full-text: Open access

Abstract

Let M be a complete, finite-volume, orientable hyperbolic manifold having exactly one cusp. If we assume that π1(M) has no subgroup isomorphic to a genus–2 surface group and that either (a) dimpH1(M;p)5 for some prime p, or (b) dim2H1(M;2)4, and the subspace of H2(M;2) spanned by the image of the cup product H1(M;2)×H1(M;2)H2(M;2) has dimension at most 1, then volM>5.06. If we assume that dim2H1(M;2)7 and that the compact core N of M contains a genus–2 closed incompressible surface, then volM>5.06. Furthermore, if we assume only that dim2H1(M;2)7, then volM>3.66.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 1 (2008), 343-379.

Dates
Received: 24 August 2007
Revised: 3 February 2007
Accepted: 17 December 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796816

Digital Object Identifier
doi:10.2140/agt.2008.8.343

Mathematical Reviews number (MathSciNet)
MR2443232

Zentralblatt MATH identifier
1160.57012

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 57M27: Invariants of knots and 3-manifolds

Keywords
hyperbolic manifold cusp volume homology Dehn filling

Citation

Culler, Marc; Shalen, Peter B. Volume and homology of one-cusped hyperbolic $3$–manifolds. Algebr. Geom. Topol. 8 (2008), no. 1, 343--379. doi:10.2140/agt.2008.8.343. https://projecteuclid.org/euclid.agt/1513796816


Export citation

References

  • I Agol, Tameness of hyperbolic $3$–manifolds
  • I Agol, M Culler, P B Shalen, Singular surfaces, mod 2 homology, and hyperbolic volume, I., to appear in Trans. Amer. Math. Soc.
  • I Agol, M Culler, P B Shalen, Dehn surgery, homology and hyperbolic volume, Algebr. Geom. Topol. 6 (2006) 2297–2312
  • J W Anderson, R D Canary, M Culler, P B Shalen, Free Kleinian groups and volumes of hyperbolic $3$–manifolds, J. Differential Geom. 43 (1996) 738–782
  • M D Baker, On boundary slopes of immersed incompressible surfaces, Ann. Inst. Fourier $($Grenoble$)$ 46 (1996) 1443–1449
  • R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer, Berlin (1992)
  • K B ör öczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243–261
  • K B ör öczky, A Florian, Über die dichteste Kugelpackung im hyperbolischen Raum, Acta Math. Acad. Sci. Hungar 15 (1964) 237–245
  • D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 19 (2006) 385–446
  • M Culler, J DeBlois, P B Shalen, Incompressible surfaces, hyperbolic volume, Heegaard genus and homology, in preparation
  • M Culler, P B Shalen, Paradoxical decompositions, $2$–generator Kleinian groups, and volumes of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 5 (1992) 231–288
  • J Hass, S Wang, Q Zhou, On finiteness of the number of boundary slopes of immersed surfaces in $3$–manifolds, Proc. Amer. Math. Soc. 130 (2002) 1851–1857
  • A E Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99 (1982) 373–377
  • J Hempel, $3$–manifolds, AMS Chelsea Publishing, Providence, RI (2004) Reprint of the 1976 original
  • T Jørgensen, A Marden, Algebraic and geometric convergence of Kleinian groups, Math. Scand. 66 (1990) 47–72
  • A G Kurosh, The theory of groups, Chelsea Publishing Co., New York (1960) (2 volumes) Translated from the Russian and edited by K A Hirsch
  • U Oertel, Incompressible maps of surfaces and Dehn filling, Topology Appl. 136 (2004) 189–204
  • C Petronio, J Porti, Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem, Expo. Math. 18 (2000) 1–35
  • G P Scott, Compact submanifolds of $3$–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246–250
  • P B Shalen, P Wagreich, Growth rates, $Z\sb p$–homology, and volumes of hyperbolic $3$–manifolds, Trans. Amer. Math. Soc. 331 (1992) 895–917
  • J Stallings, Homology and central series of groups, J. Algebra 2 (1965) 170–181
  • J Weeks, C Hodgson, Census of closed hyperbolic $3$–manifolds Available at \setbox0\makeatletter\@url http://www.geometrygames.org/SnapPea/ {\unhbox0