Algebraic & Geometric Topology

Dendroidal sets

Ieke Moerdijk and Ittay Weiss

Full-text: Open access

Abstract

We introduce the concept of a dendroidal set. This is a generalization of the notion of a simplicial set, specially suited to the study of (coloured) operads in the context of homotopy theory. We define a category of trees, which extends the category Δ used in simplicial sets, whose presheaf category is the category of dendroidal sets. We show that there is a closed monoidal structure on dendroidal sets which is closely related to the Boardman–Vogt tensor product of (coloured) operads. Furthermore, we show that each (coloured) operad in a suitable model category has a coherent homotopy nerve which is a dendroidal set, extending another construction of Boardman and Vogt. We also define a notion of an inner Kan dendroidal set, which is closely related to simplicial Kan complexes. Finally, we briefly indicate the theory of dendroidal objects in more general monoidal categories, and outline several of the applications and further theory of dendroidal sets.

Article information

Source
Algebr. Geom. Topol., Volume 7, Number 3 (2007), 1441-1470.

Dates
Received: 16 May 2007
Accepted: 15 June 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796748

Digital Object Identifier
doi:10.2140/agt.2007.7.1441

Mathematical Reviews number (MathSciNet)
MR2366165

Zentralblatt MATH identifier
1133.55004

Subjects
Primary: 55P48: Loop space machines, operads [See also 18D50] 55U10: Simplicial sets and complexes 55U40: Topological categories, foundations of homotopy theory
Secondary: 18D50: Operads [See also 55P48] 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23] 18G30: Simplicial sets, simplicial objects (in a category) [See also 55U10]

Keywords
operad homotopy coherent nerve Kan complex tensor product of operads weak $n$–categories algebras up to homotopy

Citation

Moerdijk, Ieke; Weiss, Ittay. Dendroidal sets. Algebr. Geom. Topol. 7 (2007), no. 3, 1441--1470. doi:10.2140/agt.2007.7.1441. https://projecteuclid.org/euclid.agt/1513796748


Export citation

References

  • J C Baez, J Dolan, $n$–categories, from: “School on Category Theory and Applications (Coimbra, 1999)”, Textos Mat. Sér. B 21, Univ. Coimbra, Coimbra (1999) 1–38
  • J Bénabou, Introduction to bicategories, from: “Reports of the Midwest Category Seminar”, Springer, Berlin (1967) 1–77
  • C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy algebras
  • C Berger, I Moerdijk, The Boardman–Vogt resolution of operads in monoidal model categories, Topology 45 (2006) 807–849
  • J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer, Berlin (1973)
  • D-C Cisinski, Les préfaisceaux comme modèles des types d'homotopie, Astérisque (2006) xxiv+390
  • J-M Cordier, T Porter, Vogt's theorem on categories of homotopy coherent diagrams, Math. Proc. Cambridge Philos. Soc. 100 (1986) 65–90
  • B J Day, On closed categories of functors, Lecture Notes in Mathematics 304, Springer, Berlin (1972)Report of the Midwest Category Seminar IV
  • G Dunn, Tensor product of operads and iterated loop spaces, J. Pure Appl. Algebra 50 (1988) 237–258
  • Z Fiedorowicz, Construction of $E_n$–operads
  • K Fukaya, Morse homotopy, $A^{\infty}$–category, and Floer homologies, from: “Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993)”, Lecture Notes Ser. 18, Seoul Nat. Univ., Seoul (1993) 1–102
  • P Gabriel, M Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer, New York (1967)
  • E Getzler, M M Kapranov, Cyclic operads and cyclic homology, from: “Geometry, topology & physics”, Conf. Proc. Lecture Notes Geom. Topology IV, Int. Press, Cambridge, MA (1995) 167–201
  • V Ginzburg, M Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272
  • K Hess, P E Parent, J Scott, Co-rings over operads characterize morphisms
  • A Joyal, Theory of Quasi-Categories (in preparation)
  • G M Kelly, Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series 64, Cambridge University Press, Cambridge (1982)
  • K Lefèvre-Hasegawa, Sur les $A$–infini catégories, PhD thesis Available at \setbox0\makeatletter\@url http://www.math.jussieu.fr/~keller/lefevre/publ.html {\unhbox0
  • T Leinster, A survey of definitions of $n$–category, Theory Appl. Categ. 10 (2002) 1–70
  • T Leinster, Higher operads, higher categories, London Mathematical Society Lecture Note Series 298, Cambridge University Press, Cambridge (2004)
  • J Lurie, Higher topos theory
  • V Lyubashenko, Category of $A_{\infty}$–categories, Homology Homotopy Appl. 5 (2003) 1–48
  • M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, American Mathematical Society, Providence, RI (2002)
  • J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer, Berlin (1972)
  • I Moerdijk, I Weiss, On inner Kan complexes in the category of dendroidal sets
  • J Nichols-Barrer, On Quasi-Categories as a Foundation for Higher Algebraic Stacks, PhD thesis, MIT (2007)
  • R M Vogt, Homotopy limits and colimits, Math. Z. 134 (1973) 11–52