Algebraic & Geometric Topology

The plastikstufe – a generalization of the overtwisted disk to higher dimensions

Klaus Niederkrüger

Full-text: Open access

Abstract

In this article, we give a first prototype-definition of overtwistedness in higher dimensions. According to this definition, a contact manifold is called overtwisted if it contains a plastikstufe, a submanifold foliated by the contact structure in a certain way. In three dimensions the definition of the plastikstufe is identical to the one of the overtwisted disk. The main justification for this definition lies in the fact that the existence of a plastikstufe implies that the contact manifold does not have a (semipositive) symplectic filling.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 5 (2006), 2473-2508.

Dates
Received: 11 September 2006
Revised: 17 November 2006
Accepted: 19 November 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796644

Digital Object Identifier
doi:10.2140/agt.2006.6.2473

Mathematical Reviews number (MathSciNet)
MR2286033

Zentralblatt MATH identifier
1129.53056

Subjects
Primary: 53D10: Contact manifolds, general 53R17
Secondary: 53D35: Global theory of symplectic and contact manifolds [See also 57Rxx]

Keywords
nonfillable contact manifolds of higher dimension generalization of overtwistedness

Citation

Niederkrüger, Klaus. The plastikstufe – a generalization of the overtwisted disk to higher dimensions. Algebr. Geom. Topol. 6 (2006), no. 5, 2473--2508. doi:10.2140/agt.2006.6.2473. https://projecteuclid.org/euclid.agt/1513796644


Export citation

References

  • L Bates, G Peschke, A remarkable symplectic structure, J. Differential Geom. 32 (1990) 533–538
  • T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in ${\Bbb R}\sp {2n+1}$, J. Differential Geom. 71 (2005) 177–305
  • Y Eliashberg, Classification of overtwisted contact structures on $3$–manifolds, Invent. Math. 98 (1989) 623–637
  • Y Eliashberg, Filling by holomorphic discs and its applications, from: “Geometry of low-dimensional manifolds, 2 (Durham, 1989)”, London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, Cambridge (1990) 45–67
  • H Geiges, Contact geometry, from: “Handbook of differential geometry. Vol. II”, Elsevier/North-Holland, Amsterdam (2006) 315–382
  • D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer, Berlin (2001) Reprint of the 1998 edition
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002) 405–414
  • M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347
  • D McDuff, D Salamon, Introduction to symplectic topology, second edition, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (1998)
  • D McDuff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society, Providence, RI (2004)
  • M-P Muller, Une structure symplectique sur $\mathbf{R}\sp 6$ avec une sphère lagrangienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990) 623–663
  • F Presas, A class of non-fillable contact structures