Algebraic & Geometric Topology

Bottom tangles and universal invariants

Kazuo Habiro

Full-text: Open access

Abstract

A bottom tangle is a tangle in a cube consisting only of arc components, each of which has the two endpoints on the bottom line of the cube, placed next to each other. We introduce a subcategory B of the category of framed, oriented tangles, which acts on the set of bottom tangles. We give a finite set of generators of B, which provides an especially convenient way to generate all the bottom tangles, and hence all the framed, oriented links, via closure. We also define a kind of “braided Hopf algebra action” on the set of bottom tangles.

Using the universal invariant of bottom tangles associated to each ribbon Hopf algebra H, we define a braided functor J from B to the category ModH of left H–modules. The functor J, together with the set of generators of B, provides an algebraic method to study the range of quantum invariants of links. The braided Hopf algebra action on bottom tangles is mapped by J to the standard braided Hopf algebra structure for H in ModH.

Several notions in knot theory, such as genus, unknotting number, ribbon knots, boundary links, local moves, etc are given algebraic interpretations in the setting involving the category B. The functor J provides a convenient way to study the relationships between these notions and quantum invariants.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 3 (2006), 1113-1214.

Dates
Received: 20 December 2005
Accepted: 4 May 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796574

Digital Object Identifier
doi:10.2140/agt.2006.6.1113

Mathematical Reviews number (MathSciNet)
MR2253443

Zentralblatt MATH identifier
1130.57014

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23]

Keywords
knots links tangles braided categories ribbon Hopf algebras braided Hopf algebras universal link invariants transmutation local moves Hennings invariants bottom tangles claspers

Citation

Habiro, Kazuo. Bottom tangles and universal invariants. Algebr. Geom. Topol. 6 (2006), no. 3, 1113--1214. doi:10.2140/agt.2006.6.1113. https://projecteuclid.org/euclid.agt/1513796574


Export citation

References

  • D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472
  • J S Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J. (1974)
  • J S Birman, New points of view in knot theory, Bull. Amer. Math. Soc. $($N.S.$)$ 28 (1993) 253–287
  • J S Birman, X-S Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225–270
  • R D Brandt, W B R Lickorish, K C Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986) 563–573
  • A Bruguières, A Virelizier, Hopf diagrams and quantum invariants, Algebr. Geom. Topol. 5 (2005) 1677–1710
  • B E Clark, Crosscaps and knots, Internat. J. Math. Math. Sci. 1 (1978) 113–123
  • L Crane, D Yetter, On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999) 125–163
  • R H Fox, Congruence classes of knots, Osaka Math. J. 10 (1958) 37–41
  • P J Freyd, D N Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989) 156–182
  • P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 239–246
  • L Goeritz, Knoten und quadratische Formen, Math. Z. 36 (1933) 647–654
  • C M Gordon, R A Litherland, On the signature of a link, Invent. Math. 47 (1978) 53–69
  • M Goussarov, Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517–522
  • M Goussarov, M Polyak, O Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000) 1045–1068
  • M N Gusarov, A new form of the Conway–Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4–9, 161
  • M Gusarov, On $n$–equivalence of knots and invariants of finite degree, from: “Topology of manifolds and varieties”, Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173–192
  • M N Gusarov, Variations of knotted graphs. The geometric technique of $n$–equivalence, Algebra i Analiz 12 (2000) 79–125
  • N Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint
  • K Habiro, A unified Witten–Reshetikhin–Turaev invariant of integral homology spheres
  • K Habiro, Aru karamime no kyokusyo sousa no zoku ni tuite, Master's thesis, University of Tokyo (1994)
  • K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1–83
  • K Habiro, On the quantum $\rm sl\sb 2$ invariants of knots and integral homology spheres, from: “Invariants of knots and 3–manifolds (Kyoto, 2001)”, Geom. Topol. Monogr. 4 (2002) 55–68
  • K Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004) 1127–1146
  • K Habiro, T T Q Le, (article in preparation)
  • M Hennings, Invariants of links and $3$–manifolds obtained from Hopf algebras, J. London Math. Soc. $(2)$ 54 (1996) 594–624
  • J A Hillman, Spanning links by nonorientable surfaces, Quart. J. Math. Oxford Ser. $(2)$ 31 (1980) 169–179
  • C F Ho, A polynomial invariant for knots and links – preliminary report, Abstracts Amer. Math. Soc. 6 (1985)
  • V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 103–111
  • N Kamada, S Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000) 93–106
  • C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, New York (1995)
  • C Kassel, V Turaev, Chord diagram invariants of tangles and graphs, Duke Math. J. 92 (1998) 497–552
  • L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press, Princeton, NJ (1983)
  • L H Kauffman, 958895
  • L H Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys. 5 (1993) 735–773
  • L H Kauffman, Virtual knot theory, European J. Combin. 20 (1999) 663–690
  • L H Kauffman, D E Radford, Invariants of $3$–manifolds derived from finite-dimensional Hopf algebras, J. Knot Theory Ramifications 4 (1995) 131–162
  • L Kauffman, D E Radford, Oriented quantum algebras, categories and invariants of knots and links, J. Knot Theory Ramifications 10 (2001) 1047–1084
  • T Kerler, Genealogy of non-perturbative quantum-invariants of $3$–manifolds: the surgical family, from: “Geometry and physics (Aarhus, 1995)”, Lecture Notes in Pure and Appl. Math. 184, Dekker, New York (1997) 503–547
  • T Kerler, Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999) 207–281
  • T Kerler, Homology TQFT's and the Alexander–Reidemeister invariant of 3–manifolds via Hopf algebras and skein theory, Canad. J. Math. 55 (2003) 766–821
  • T Kerler, Towards an algebraic characterization of 3–dimensional cobordisms, from: “Diagrammatic morphisms and applications (San Francisco, CA, 2000)”, Contemp. Math. 318, Amer. Math. Soc. (2003) 141–173
  • T Kerler, V V Lyubashenko, Non-semisimple topological quantum field theories for 3–manifolds with corners, Lecture Notes in Mathematics 1765, Springer, Berlin (2001)
  • R Kirby, A calculus for framed links in $S\sp3$, Invent. Math. 45 (1978) 35–56
  • R J Lawrence, A universal link invariant using quantum groups, from: “Differential geometric methods in theoretical physics (Chester, 1988)”, World Sci. Publishing, Teaneck, NJ (1989) 55–63
  • R J Lawrence, A universal link invariant, from: “The interface of mathematics and particle physics (Oxford, 1988)”, Inst. Math. Appl. Conf. Ser. New Ser. 24, Oxford Univ. Press, New York (1990) 151–156
  • T Q T Le, J Murakami, The universal Vassiliev–Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996) 41–64
  • H C Lee, Tangles, links and twisted quantum groups, from: “Physics, geometry, and topology (Banff, AB, 1989)”, NATO Adv. Sci. Inst. Ser. B Phys. 238, Plenum, New York (1990) 623–655
  • H C Lee, On Seifert circles and functors for tangles, from: “Infinite analysis, Part A, B (Kyoto, 1991)”, Adv. Ser. Math. Phys. 16, World Sci. Publ. (1992) 581–610
  • H C Lee, Tangle invariants and centre of the quantum group, from: “Knots 90 (Osaka, 1990)”, de Gruyter, Berlin (1992) 341–361
  • H C Lee, Universal tangle invariant and commutants of quantum algebras, J. Phys. A 29 (1996) 393–425
  • J Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001) 243–270
  • V V Lyubashenko, Invariants of $3$–manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995) 467–516
  • S Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer, New York (1998)
  • S Majid, Algebras and Hopf algebras in braided categories, from: “Advances in Hopf algebras (Chicago, IL, 1992)”, Lecture Notes in Pure and Appl. Math. 158, Dekker, New York (1994) 55–105
  • S Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge (1995)
  • S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268–278, 345
  • H Murakami, Some metrics on classical knots, Math. Ann. 270 (1985) 35–45
  • H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75–89
  • H Murakami, A Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995) 261–273
  • S Naik, T Stanford, A move on diagrams that generates $S$–equivalence of knots, J. Knot Theory Ramifications 12 (2003) 717–724
  • Y Nakanishi, On Fox's congruence classes of knots. II, Osaka J. Math. 27 (1990) 207–215
  • Y Nakanishi, From a view of localized link theory, from: “Knots 90 (Osaka, 1990)”, de Gruyter, Berlin (1992) 173–183
  • Y Nakanishi, S Suzuki, On Fox's congruence classes of knots, Osaka J. Math. 24 (1987) 217–225
  • T Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links, J. Knot Theory Ramifications 2 (1993) 211–232
  • T Ohtsuki, Invariants of $3$–manifolds derived from universal invariants of framed links, Math. Proc. Cambridge Philos. Soc. 117 (1995) 259–273
  • T Ohtsuki, Problems on invariants of knots and 3–manifolds, from: “Invariants of knots and 3–manifolds (Kyoto, 2001)”, Geom. Topol. Monogr. 4 (2002) i–iv, 377–572
  • J H Przytycki, $t\sb k$ moves on links, from: “Braids (Santa Cruz, CA, 1986)”, Contemp. Math. 78, Amer. Math. Soc., Providence, RI (1988) 615–656
  • J H Przytycki, Skein modules of $3$–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91–100
  • J H Przytycki, Skein module deformations of elementary moves on links, from: “Invariants of knots and 3–manifolds (Kyoto, 2001)”, Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 313–335
  • J H Przytycki, P Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115–139
  • N Y Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz 1 (1989) 169–188
  • N Y Reshetikhin, M A Semenov-Tian-Shansky, Quantum $R$–matrices and factorization problems, J. Geom. Phys. 5 (1988) 533–550 (1989)
  • N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1–26
  • T Sakai, A condition for a $3$–manifold to be a knot exterior, from: “KNOTS '96 (Tokyo)”, World Sci. Publishing, River Edge, NJ (1997) 465–477
  • T Sakai, Wirtinger presentations and the Kauffman bracket, Kobe J. Math. 17 (2000) 83–98
  • S F Sawin, Invariants of Spin three-manifolds from Chern–Simons theory and finite-dimensional Hopf algebras, Adv. Math. 165 (2002) 35–70
  • M C Shum, Tortile tensor categories, J. Pure Appl. Algebra 93 (1994) 57–110
  • K Taniyama, A Yasuhara, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002) 325–343
  • V G Turaev, Operator invariants of tangles, and $R$–matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 1073–1107, 1135
  • V G Turaev, Quantum invariants of knots and 3–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter & Co., Berlin (1994)
  • V A Vassiliev, Cohomology of knot spaces, from: “Theory of singularities and its applications”, Adv. Soviet Math. 1, Amer. Math. Soc., Providence, RI (1990) 23–69
  • A Virelizier, Kirby elements and quantum invariants, Proc. London Math. Soc. 93 (2006) 474–514
  • D N Yetter, Markov algebras, from: “Braids (Santa Cruz, CA, 1986)”, Contemp. Math. 78, Amer. Math. Soc., Providence, RI (1988) 705–730
  • D Yetter, Portrait of the handle as a Hopf algebra, from: “Geometry and physics (Aarhus, 1995)”, Lecture Notes in Pure and Appl. Math. 184, Dekker, New York (1997) 481–502
  • D N Yetter, Functorial knot theory, Series on Knots and Everything 26, World Scientific Publishing Co., River Edge, NJ (2001)