Algebraic & Geometric Topology

Contractibility of deformation spaces of G-trees

Matt Clay

Full-text: Open access

Abstract

Forester has defined spaces of simplicial tree actions for a finitely generated group, called deformation spaces. Culler and Vogtmann’s Outer space is an example of a deformation space. Using ideas from Skora’s proof of the contractibility of Outer space, we show that under some mild hypotheses deformation spaces are contractible.

Article information

Source
Algebr. Geom. Topol., Volume 5, Number 4 (2005), 1481-1503.

Dates
Received: 19 November 2004
Accepted: 20 October 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796486

Digital Object Identifier
doi:10.2140/agt.2005.5.1481

Mathematical Reviews number (MathSciNet)
MR2186106

Zentralblatt MATH identifier
1120.20027

Subjects
Primary: 20E08: Groups acting on trees [See also 20F65]
Secondary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 20F28: Automorphism groups of groups [See also 20E36]

Keywords
$G$–tree deformation space Outer space

Citation

Clay, Matt. Contractibility of deformation spaces of G-trees. Algebr. Geom. Topol. 5 (2005), no. 4, 1481--1503. doi:10.2140/agt.2005.5.1481. https://projecteuclid.org/euclid.agt/1513796486


Export citation

References

  • M Bestvina, The topology of $\Out(F_n)$, Proc. of the ICM, Beijing II, Higher Ed. Press, Beijing (2002) 373–384
  • M Bridson, K Vogtmann, Automorphism groups of free groups, surface groups and free abelian groups.
  • M Culler, J W Morgan, Group actions on ${\bf R}$-trees, Proc. London Math. Soc. (3) 55 (1987) 571–604
  • M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91–119
  • M Forester, Deformation and rigidity of simplicial group actions on trees, \gtref620028219267
  • M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53–73
  • V Guirardel, G Levitt, A general construction of JSJ splittings, research announcement
  • V Guirardel, G Levitt, The outer space of a free product, e-print (2005) \arxivmath.GR/0501288
  • D McCullough, A Miller, Symmetric automorphisms of free products, Mem. Amer. Math. Soc. 122 (1996) viii+97pp
  • F Paulin, The Gromov topology on ${\bf R}$-trees, Topology Appl. 32 (1989) 197–221
  • R Skora, Deformation of length functions in groups, preprint
  • K Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata 94 (2002) 1–31