Algebraic & Geometric Topology

Abelian quotients of the string link monoid

Jean-Baptiste Meilhan and Akira Yasuhara

Full-text: Open access

Abstract

The set S(n) of n–string links has a monoid structure, given by the stacking product. When considered up to concordance, S(n) becomes a group, which is known to be abelian only if n=1. In this paper, we consider two families of equivalence relations which endow S(n) with a group structure, namely the Ck–equivalence introduced by Habiro in connection with finite-type invariants theory, and the Ck–concordance, which is generated by Ck–equivalence and concordance. We investigate under which condition these groups are abelian, and give applications to finite-type invariants.

Article information

Source
Algebr. Geom. Topol., Volume 14, Number 3 (2014), 1461-1488.

Dates
Received: 7 May 2013
Revised: 31 October 2013
Accepted: 6 November 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715911

Digital Object Identifier
doi:10.2140/agt.2014.14.1461

Mathematical Reviews number (MathSciNet)
MR3190601

Zentralblatt MATH identifier
1315.57013

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M27: Invariants of knots and 3-manifolds
Secondary: 20F38: Other groups related to topology or analysis

Keywords
string links $C_n$–moves concordance claspers Milnor invariants

Citation

Meilhan, Jean-Baptiste; Yasuhara, Akira. Abelian quotients of the string link monoid. Algebr. Geom. Topol. 14 (2014), no. 3, 1461--1488. doi:10.2140/agt.2014.14.1461. https://projecteuclid.org/euclid.agt/1513715911


Export citation

References

  • D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472
  • D Bar-Natan, Vassiliev and quantum invariants of braids, from: “The interface of knots and physics”, (L H Kauffman, editor), Proc. Sympos. Appl. Math. 51, Amer. Math. Soc. (1996) 129–144
  • J E P P de Campos, Boundary theta curves in $S\sp 3$, Tokyo J. Math. 28 (2005) 283–288
  • A J Casson, Link cobordism and Milnor's invariant, Bull. London Math. Soc. 7 (1975) 39–40
  • T D Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 427, Amer. Math. Soc. (1990)
  • J Conant, R Schneiderman, P Teichner, Whitney tower concordance of classical links, Geom. Topol. 16 (2012) 1419–1479
  • J Conant, P Teichner, Grope cobordism of classical knots, Topology 43 (2004) 119–156
  • S V Duzhin, M V Karev, Determination of the orientation of string links using finite-type invariants, Funktsional. Anal. i Prilozhen. 41 (2007) 48–59
  • S Garoufalidis, J Levine, Concordance and $1$–loop clovers, Algebr. Geom. Topol. 1 (2001) 687–697
  • M N Gusarov, Variations of knotted graphs: The geometric technique of $n$–equivalence, Algebra i Analiz 12 (2000) 79–125
  • N Habegger, X-S Lin, On link concordance and Milnor's $\bar {\mu}$ invariants, Bull. London Math. Soc. 30 (1998) 419–428
  • N Habegger, G Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253–1289
  • K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1–83
  • J-Y Le Dimet, Cobordisme d'enlacements de disques, Mém. Soc. Math. France 32, Soc. Math. France, Paris (1988)
  • G Massuyeau, Finite-type invariants of $3$–manifolds and the dimension subgroup problem, J. Lond. Math. Soc. 75 (2007) 791–811
  • J-B Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory Ramifications 14 (2005) 665–687
  • J-B Meilhan, A Yasuhara, Characterization of finite type string link invariants of degree $<5$, Math. Proc. Cambridge Philos. Soc. 148 (2010) 439–472
  • J Milnor, Isotopy of links: Algebraic geometry and topology, from: “A symposium in honor of S Lefschetz”, Princeton Univ. Press (1957) 280–306
  • K Miyazaki, The theta-curve cobordism group is not abelian, Tokyo J. Math. 17 (1994) 165–169
  • H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75–89
  • K Y Ng, Groups of ribbon knots, Topology 37 (1998) 441–458
  • T Ohtsuki, Quantum invariants: A study of knots, $3$–manifolds, and their sets, Series on Knots and Everything 29, World Scientific, River Edge, NJ (2002)
  • T Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269–276
  • Y Takabatake, T Kuboyama, H Sakamoto, stringcmp: Faster calculation for Milnor invariant Available at \setbox0\makeatletter\@url https://code.google.com/p/stringcmp/ {\unhbox0
  • A Yasuhara, $C\sb k$–moves on spatial theta-curves and Vassiliev invariants, Topology Appl. 128 (2003) 309–324