Algebraic & Geometric Topology
- Algebr. Geom. Topol.
- Volume 14, Number 1 (2014), 229-281.
Homotopy theory of non-symmetric operads, II: Change of base category and left properness
Abstract
We prove, under mild assumptions, that a Quillen equivalence between symmetric monoidal model categories gives rise to a Quillen equivalence between their model categories of (non-symmetric) operads, and also between model categories of algebras over operads. We also show left properness results on model categories of operads and algebras over operads. As an application, we prove homotopy invariance for (unital) associative operads.
Article information
Source
Algebr. Geom. Topol., Volume 14, Number 1 (2014), 229-281.
Dates
Received: 24 April 2013
Revised: 9 August 2013
Accepted: 9 August 2013
First available in Project Euclid: 19 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715800
Digital Object Identifier
doi:10.2140/agt.2014.14.229
Mathematical Reviews number (MathSciNet)
MR3158759
Zentralblatt MATH identifier
1281.18001
Subjects
Primary: 18D50: Operads [See also 55P48] 55U35: Abstract and axiomatic homotopy theory
Secondary: 18G55: Homotopical algebra
Keywords
operad algebra model category Quillen equivalence $A$–infinity algebra
Citation
Muro, Fernando. Homotopy theory of non-symmetric operads, II: Change of base category and left properness. Algebr. Geom. Topol. 14 (2014), no. 1, 229--281. doi:10.2140/agt.2014.14.229. https://projecteuclid.org/euclid.agt/1513715800