Algebraic & Geometric Topology

Koszul duality theory for operads over Hopf algebras

Olivia Bellier

Full-text: Open access

Abstract

The transfer of the generating operations of an algebra to a homotopy equivalent chain complex produces higher operations. The first goal of this paper is to describe precisely the higher structure obtained when the unary operations commute with the contracting homotopy. To solve this problem, we develop the Koszul duality theory of operads in the category of modules over a cocommutative Hopf algebra. This gives rise to a simpler category of homotopy algebras and infinity morphisms, which allows us to get a new description of the homotopy category of algebras over such operads. The main example of this theory is given by Batalin–Vilkovisky algebras.

Article information

Source
Algebr. Geom. Topol., Volume 14, Number 1 (2014), 1-35.

Dates
Received: 25 February 2013
Revised: 6 June 2013
Accepted: 6 June 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715787

Digital Object Identifier
doi:10.2140/agt.2014.14.1

Mathematical Reviews number (MathSciNet)
MR3158751

Zentralblatt MATH identifier
1296.18009

Subjects
Primary: 18D50: Operads [See also 55P48] 18G55: Homotopical algebra
Secondary: 16W30 55P48: Loop space machines, operads [See also 18D50]

Keywords
operads Batalin–Vilkovisky algebras Koszul duality theory homotopical algebra

Citation

Bellier, Olivia. Koszul duality theory for operads over Hopf algebras. Algebr. Geom. Topol. 14 (2014), no. 1, 1--35. doi:10.2140/agt.2014.14.1. https://projecteuclid.org/euclid.agt/1513715787


Export citation

References

  • S Barannikov, M Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices (1998) 201–215
  • I A Batalin, G A Vilkovisky, Gauge algebra and quantization, from: “Quantum gravity”, (M A Markov, P C West, editors), Plenum, New York (1984) 463–480
  • C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805–831
  • H-D Cao, J Zhou, DGBV algebras and mirror symmetry, from: “First International Congress of Chinese Mathematicians”, (L Yang, S-T Yau, editors), AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc. (2001) 279–289
  • H-D Cao, J Zhou, On quasi-isomorphic DGBV algebras, Math. Ann. 326 (2003) 459–478
  • M Chas, D Sullivan, String topology
  • P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245–274
  • G C Drummond-Cole, Formal formality of the hypercommutative algebras of low dimensional Calabi–Yau varieties
  • G C Drummond-Cole, B Vallette, The minimal model for the Batalin–Vilkovisky operad, Selecta Math. 19 (2013) 1–47
  • I Gálvez-Carrillo, A Tonks, B Vallette, Homotopy Batalin–Vilkovisky algebras, J. Noncommut. Geom. 6 (2012) 539–602
  • E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265–285
  • E Getzler, Two-dimensional topological gravity and equivariant cohomology, Comm. Math. Phys. 163 (1994) 473–489
  • E Getzler, J D S Jones, Operads, homotopy algebra and iterated integrals for double loop spaces
  • V Ginzburg, M Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272
  • E Hoffbeck, A Poincaré–Birkhoff–Witt criterion for Koszul operads, Manuscripta Math. 131 (2010) 87–110
  • T V Kadeishvili, The algebraic structure in the homology of an $A(\infty)$–algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982) 249–252
  • M Kontsevich, Homological algebra of mirror symmetry, from: “Proceedings of the International Congress of Mathematicians, Vol. 1, 2”, (S D Chatterji, editor), Birkhäuser, Basel (1995) 120–139
  • P Van der Laan, Coloured Koszul duality and strongly homotopy operads
  • B H Lian, G J Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. Math. Phys. 154 (1993) 613–646
  • M Livernet, C Roitzheim, S Whitehouse, Derived $A\sb \infty$–algebras in an operadic context, Algebr. Geom. Topol. 13 (2013) 409–440
  • J-L Loday, B Vallette, Algebraic operads, Grundl. Math. Wissen. 346, Springer, Heidelberg (2012)
  • Y I Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, AMS Coll. Publ. 47, Amer. Math. Soc. (1999)
  • M Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble) 46 (1996) 307–323
  • P Salvatore, N Wahl, Framed discs operads and Batalin–Vilkovisky algebras, Q. J. Math. 54 (2003) 213–231
  • J D Stasheff, Homotopy associativity of $H$–spaces: I, II, Trans. Amer. Math. Soc. 108, 275-292; ibid. 108 (1963) 293–312
  • M E Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, New York (1969)
  • B Vallette, Homotopy theory of homotopy algebras (2013) Available at \setbox0\makeatletter\@url http://math.unice.fr/~brunov/HomotopyTheory.pdf {\unhbox0