Algebraic & Geometric Topology

Generalized Gauss maps and integrals for three-component links: Toward higher helicities for magnetic fields and fluid flows, part II

Dennis DeTurck, Herman Gluck, Rafal Komendarczyk, Paul Melvin, Haggai Nuchi, Clayton Shonkwiler, and David Shea Vela-Vick

Full-text: Open access

Abstract

We describe a new approach to triple linking invariants and integrals, aiming for a simpler, wider and more natural applicability to the search for higher order helicities.

To each three-component link in Euclidean 3–space, we associate a generalized Gauss map from the 3–torus to the 2–sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its generalized Gauss map up to homotopy. This generalized Gauss map is a natural successor to Gauss’s original map from the 2–torus to the 2–sphere. Like its prototype, it is equivariant with respect to orientation-preserving isometries of the ambient space, attesting to its naturality and positioning it for application to physical situations.

When the pairwise linking numbers are all zero, we give an integral formula for the triple linking number which is a natural successor to the classical Gauss integral for the pairwise linking numbers, with an integrand invariant under orientation-preserving isometries of the ambient space. This new integral is patterned after J H C Whitehead’s integral formula for the Hopf invariant, and hence interpretable as the ordinary helicity of a related vector field on the 3–torus.

Article information

Source
Algebr. Geom. Topol., Volume 13, Number 5 (2013), 2897-2923.

Dates
Received: 18 November 2012
Accepted: 3 March 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715694

Digital Object Identifier
doi:10.2140/agt.2013.13.2897

Mathematical Reviews number (MathSciNet)
MR3116307

Zentralblatt MATH identifier
1348.57007

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 76B99: None of the above, but in this section 78A25: Electromagnetic theory, general

Keywords
Gauss integral triple linking helicity

Citation

DeTurck, Dennis; Gluck, Herman; Komendarczyk, Rafal; Melvin, Paul; Nuchi, Haggai; Shonkwiler, Clayton; Vela-Vick, David Shea. Generalized Gauss maps and integrals for three-component links: Toward higher helicities for magnetic fields and fluid flows, part II. Algebr. Geom. Topol. 13 (2013), no. 5, 2897--2923. doi:10.2140/agt.2013.13.2897. https://projecteuclid.org/euclid.agt/1513715694


Export citation

References

  • P M Akhmetiev, On a new integral formula for an invariant of $3$–component oriented links, J. Geom. Phys. 53 (2005) 180–196
  • P Akhmetiev, A Ruzmaikin, A fourth-order topological invariant of magnetic or vortex lines, J. Geom. Phys. 15 (1995) 95–101
  • V I Arnold, B A Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences 125, Springer, New York (1998)
  • D Auckly, L Kapitanski, Analysis of $S\sp 2$–valued maps and Faddeev's model, Comm. Math. Phys. 256 (2005) 611–620
  • M A Berger, Third-order link integrals, J. Phys. A 23 (1990) 2787–2793
  • M A Berger, Third-order braid invariants, J. Physics A 24 (1991) 4027–4036
  • H v Bodecker, G Hornig, Link invariants of electromagnetic fields, Phys. Rev. Lett. 92 (2004) 030406
  • P Cromwell, E Beltrami, M Rampichini, The Borromean rings, Math. Intelligencer 20 (1998) 53–62
  • D DeTurck, H Gluck, R Komendarczyk, P Melvin, C Shonkwiler, D S Vela-Vick, Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-component links, Mat. Contemp. 34 (2008) 251–283
  • D DeTurck, H Gluck, R Komendarczyk, P Melvin, C Shonkwiler, D S Vela-Vick, Generalized Gauss maps and integrals for three-component links: Toward higher helicities for magnetic fields and fluid flows, J. Math. Phys. 54 (2013) 013515
  • N W Evans, M A Berger, A hierarchy of linking integrals, from: “Topological aspects of the dynamics of fluids and plasmas”, (H K Moffatt, G M Zaslavsky, P Comte, M Tabor, editors), NATO Adv. Sci. Inst. Ser. E Appl. Sci. 218, Kluwer Acad. Publ., Dordrecht (1992) 237–248
  • C F Gauss, Integral formula for linking number, from: “Werke Ergänzungsreihe, Band V”, (C A F Peters, editor), Georg Olms Verlag, Hildesheim (1975) 605
  • E Guadagnini, M Martellini, M Mintchev, Wilson lines in Chern–Simons theory and link invariants, Nuclear Phys. B 330 (1990) 575–607
  • H Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931) 637–665
  • G Hornig, C Mayer, Towards a third-order topological invariant for magnetic fields, J. Phys. A 35 (2002) 3945–3959
  • B A Khesin, Geometry of higher helicities, Mosc. Math. J. 3 (2003) 989–1011
  • R Komendarczyk, The third order helicity of magnetic fields via link maps, Comm. Math. Phys. 292 (2009) 431–456
  • R Komendarczyk, The third order helicity of magnetic fields via link maps, II, J. Math. Phys. 51 (2010) 122702
  • P Laurence, E Stredulinsky, Asymptotic Massey products, induced currents and Borromean torus links, J. Math. Phys. 41 (2000) 3170–3191
  • L Leal, Link invariants from classical Chern–Simons theory, Phys. Rev. D 66 (2002) 125007
  • L Leal, J Pineda, The topological theory of the Milnor invariant $\overline\mu(1,2,3)$, Modern Phys. Lett. A 23 (2008) 205–210
  • W S Massey, Some higher order cohomology operations, from: “Symposium internacional de topologí a algebraica”, (N C Flores, editor), Universidad Nacional Autónoma de México, Mexico City (1958) 145–154
  • W S Massey, Higher order linking numbers, from: “Conf. on Algebraic Topology”, Univ. of Illinois at Chicago Circle (1969) 174–205
  • J Milnor, Link groups, Ann. of Math. 59 (1954) 177–195
  • H K Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 35 (1969) 117–129
  • M I Monastyrsky, V S Retakh, Topology of linked defects in condensed matter, Comm. Math. Phys. 103 (1986) 445–459
  • L Pontrjagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941) 331–363
  • T Rivière, High-dimensional helicities and rigidity of linked foliations, Asian J. Math. 6 (2002) 505–533
  • A Ruzmaikin, P Akhmetiev, Topological invariants of magnetic fields, and the effect of reconnections, Phys. Plasmas 1 (1994) 331–336
  • J H C Whitehead, An expression of Hopf's invariant as an integral, Proc. Nat. Acad. Sci. USA 33 (1947) 117–123
  • L Woltjer, A theorem on force-free magnetic fields, Proc. Nat. Acad. Sci. USA 44 (1958) 489–491