Algebraic & Geometric Topology

Spectral rigidity of automorphic orbits in free groups

Mathieu Carette, Stefano Francaviglia, Ilya Kapovich, and Armando Martino

Full-text: Open access

Abstract

It is well-known that a point T cvN in the (unprojectivized) Culler–Vogtmann Outer space cvN is uniquely determined by its translation length function T:FN. A subset S of a free group FN is called spectrally rigid if, whenever T,T cvN are such that gT=gT for every gS then T=T in cvN. By contrast to the similar questions for the Teichmüller space, it is known that for N2 there does not exist a finite spectrally rigid subset of FN.

In this paper we prove that for N3 if H Aut(FN) is a subgroup that projects to a nontrivial normal subgroup in Out(FN) then the H–orbit of an arbitrary nontrivial element gFN is spectrally rigid. We also establish a similar statement for F2=F(a,b), provided that gF2 is not conjugate to a power of [a,b].

Article information

Source
Algebr. Geom. Topol., Volume 12, Number 3 (2012), 1457-1486.

Dates
Received: 3 June 2011
Revised: 19 April 2012
Accepted: 2 May 2012
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715405

Digital Object Identifier
doi:10.2140/agt.2012.12.1457

Mathematical Reviews number (MathSciNet)
MR2966693

Zentralblatt MATH identifier
1261.20040

Subjects
Primary: 20E08: Groups acting on trees [See also 20F65] 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 57M07: Topological methods in group theory 57M50: Geometric structures on low-dimensional manifolds 53C24: Rigidity results

Keywords
marked length spectrum rigidity free groups Outer space

Citation

Carette, Mathieu; Francaviglia, Stefano; Kapovich, Ilya; Martino, Armando. Spectral rigidity of automorphic orbits in free groups. Algebr. Geom. Topol. 12 (2012), no. 3, 1457--1486. doi:10.2140/agt.2012.12.1457. https://projecteuclid.org/euclid.agt/1513715405


Export citation

References

  • M Bestvina, M Feighn, Hyperbolicity of the complex of free factors
  • M Bestvina, M Feighn, Outer limits, preprint (1993) Available at \setbox0\makeatletter\@url http://andromeda.rutgers.edu/~feighn/papers/outer.pdf {\unhbox0
  • M Bestvina, M Feighn, A hyperbolic $\mathrm{Out}(F_n)$–complex, Groups Geom. Dyn. 4 (2010) 31–58
  • M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215–244
  • M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1–51
  • F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71–158
  • F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139–162
  • M R Bridson, K Vogtmann, The symmetries of outer space, Duke Math. J. 106 (2001) 391–409
  • M R Bridson, K Vogtmann, Automorphism groups of free groups, surface groups and free abelian groups, from: “Problems on mapping class groups and related topics”, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI (2006) 301–316
  • I Chiswell, Introduction to $\Lambda$–trees, World Scientific Publishing Co., River Edge, NJ (2001)
  • M Clay, A Pettet, Currents twisting and nonsingular matrices, Comment. Math. Helv. (to appear)
  • M M Cohen, M Lustig, Very small group actions on $\mathbb{R}$–trees and Dehn twist automorphisms, Topology 34 (1995) 575–617
  • M M Cohen, M Lustig, M Steiner, $\mathbb{R}$–tree actions are not determined by the translation lengths of finitely many elements, from: “Arboreal group theory (Berkeley, CA, 1988)”, Math. Sci. Res. Inst. Publ. 19, Springer, New York (1991) 183–187
  • M Cohen, W Metzler, A Zimmermann, What does a basis of $F(a,\,b)$ look like?, Math. Ann. 257 (1981) 435–445
  • T Coulbois, A Hilion, M Lustig, $\mathbb{R}$–trees and laminations for free groups I: Algebraic laminations, J. Lond. Math. Soc. 78 (2008) 723–736
  • T Coulbois, A Hilion, M Lustig, $\mathbb{R}$–trees and laminations for free groups II: The dual lamination of an $\mathbb{R}$–tree, J. Lond. Math. Soc. 78 (2008) 737–754
  • C B Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990) 150–169
  • C B Croke, Rigidity theorems in Riemannian geometry, from: “Geometric methods in inverse problems and PDE control”, IMA Vol. Math. Appl. 137, Springer, New York (2004) 47–72
  • C B Croke, P Eberlein, B Kleiner, Conjugacy and rigidity for nonpositively curved manifolds of higher rank, Topology 35 (1996) 273–286
  • C Croke, A Fathi, J Feldman, The marked length-spectrum of a surface of nonpositive curvature, Topology 31 (1992) 847–855
  • M Culler, Finite groups of outer automorphisms of a free group, from: “Contributions to group theory”, Contemp. Math. 33, Amer. Math. Soc., Providence, RI (1984) 197–207
  • M Culler, J W Morgan, Group actions on $\mathbb{R}$–trees, Proc. London Math. Soc. 55 (1987) 571–604
  • M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91–119
  • M Culler, K Vogtmann, The boundary of outer space in rank two, from: “Arboreal group theory (Berkeley, CA, 1988)”, Math. Sci. Res. Inst. Publ. 19, Springer, New York (1991) 189–230
  • F Dal'Bo, I Kim, Marked length rigidity for symmetric spaces, Comment. Math. Helv. 77 (2002) 399–407
  • M Duchin, C J Leininger, K Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010) 231–277
  • A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France, Paris (1979) Séminaire Orsay, With an English summary
  • S Francaviglia, Geodesic currents and length compactness for automorphisms of free groups, Trans. Amer. Math. Soc. 361 (2009) 161–176
  • S Francaviglia, A Martino, Metric properties of outer space, Publ. Mat. 55 (2011) 433–473
  • V Guirardel, Approximations of stable actions on $\mathbb{R}$–trees, Comment. Math. Helv. 73 (1998) 89–121
  • V Guirardel, Dynamics of $\mathrm{Out}(F_n)$ on the boundary of outer space, Ann. Sci. École Norm. Sup. 33 (2000) 433–465
  • U Hamenstädt, Invariant Radon measures on measured lamination space, Invent. Math. 176 (2009) 223–273
  • M Handel, L Mosher, Subgroup classification in $\mathrm{Out}(F_n)$
  • S Hersonsky, F Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997) 349–388
  • I Kapovich, The frequency space of a free group, Internat. J. Algebra Comput. 15 (2005) 939–969
  • I Kapovich, Currents on free groups, from: “Topological and asymptotic aspects of group theory”, (R Grigorchuk, M Mihalik, M Sapir, Z Sunik, editors), Contemp. Math. 394, Amer. Math. Soc., Providence, RI (2006) 149–176
  • I Kapovich, Clusters, currents, and Whitehead's algorithm, Experiment. Math. 16 (2007) 67–76
  • I Kapovich, Random length-spectrum rigidity for free groups, Proc. Amer. Math. Soc. 140 (2012) 1549–1560
  • I Kapovich, M Lustig, The actions of $\mathrm{Out}(F_k)$ on the boundary of outer space and on the space of currents: minimal sets and equivariant incompatibility, Ergodic Theory Dynam. Systems 27 (2007) 827–847
  • I Kapovich, M Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009) 1805–1833
  • I Kapovich, M Lustig, Domains of proper discontinuity on the boundary of outer space, Illinois J. Math. 54 (2010) 89–108
  • I Kapovich, M Lustig, Intersection form, laminations and currents on free groups, Geom. Funct. Anal. 19 (2010) 1426–1467
  • I Kapovich, M Lustig, Stabilizers of $\mathbb{R}$–trees with free isometric actions of $F_N$, J. Group Theory 14 (2011) 673–694
  • I Kapovich, T Nagnibeda, The Patterson–Sullivan embedding and minimal volume entropy for outer space, Geom. Funct. Anal. 17 (2007) 1201–1236
  • I Kapovich, T Nagnibeda, Geometric entropy of geodesic currents on free groups, from: “Dynamical numbers–-interplay between dynamical systems and number theory”, Contemp. Math. 532, Amer. Math. Soc., Providence, RI (2010) 149–175
  • I Kapovich, T Nagnibeda, Generalized geodesic currents on free groups
  • I Kim, Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems 21 (2001) 93–114
  • I Kim, Marked length rigidity of rank one symmetric spaces and their product, Topology 40 (2001) 1295–1323
  • I Kim, Rigidity on symmetric spaces, Topology 43 (2004) 393–405
  • R Martin, Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, PhD thesis, University of California, Los Angeles (1995)
  • J-P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151–162
  • F Paulin, The Gromov topology on $\mathbb{R}$–trees, Topology Appl. 32 (1989) 197–221
  • B Ray, Non-rigidity of cyclic automorphic orbits in free groups, Int. J. Alg. Comp. 22 (2012) 1250021
  • J Smillie, K Vogtmann, Length functions and outer space, Michigan Math. J. 39 (1992) 485–493
  • K Vogtmann, What is$\dots$outer space?, Notices Amer. Math. Soc. 55 (2008) 784–786
  • B Zimmermann, Über Homöomorphismen $n$–dimensionaler Henkelkörper und endliche Erweiterungen von Schottky–Gruppen, Comment. Math. Helv. 56 (1981) 474–486