Algebraic & Geometric Topology

The self-linking number in annulus and pants open book decompositions

Keiko Kawamuro and Elena Pavelescu

Full-text: Open access

Abstract

We find a self-linking number formula for a given null-homologous transverse link in a contact manifold that is compatible with either an annulus or a pair of pants open book decomposition. It extends Bennequin’s self-linking formula for a braid in the standard contact 3–sphere.

Article information

Source
Algebr. Geom. Topol., Volume 11, Number 1 (2011), 553-585.

Dates
Received: 8 November 2009
Revised: 6 October 2010
Accepted: 24 October 2010
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715194

Digital Object Identifier
doi:10.2140/agt.2011.11.553

Mathematical Reviews number (MathSciNet)
MR2783238

Zentralblatt MATH identifier
1246.57018

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M27: Invariants of knots and 3-manifolds
Secondary: 57M50: Geometric structures on low-dimensional manifolds

Keywords
braid transverse knots self-linking number

Citation

Kawamuro, Keiko; Pavelescu, Elena. The self-linking number in annulus and pants open book decompositions. Algebr. Geom. Topol. 11 (2011), no. 1, 553--585. doi:10.2140/agt.2011.11.553. https://projecteuclid.org/euclid.agt/1513715194


Export citation

References

  • J W Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA 9 (1923) 93–95
  • D Bennequin, Entrelacements et équations de Pfaff, from: “Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)”, Astérisque 107, Soc. Math. France (1983) 87–161
  • J S Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton Univ. Press (1974)
  • Y Eliashberg, Contact $3$–manifolds twenty years since J Martinet's work, Ann. Inst. Fourier $($Grenoble$)$ 42 (1992) 165–192
  • J B Etnyre, Transversal torus knots, Geom. Topol. 3 (1999) 253–268
  • J B Etnyre, Legendrian and transversal knots, from: “Handbook of knot theory”, (W Menasco, M Thistlethwaite, editors), Elsevier, Amsterdam (2005) 105–185
  • J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31–39
  • J B Etnyre, B Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008) 3133–3151
  • B Farb, D Margalit, A primer on mapping class groups, version 5.0, Preprint (2011) Available at \setbox0\makeatletter\@url http://www.math.uchicago.edu/~margalit/mcg/mcgv50.pdf {\unhbox0
  • H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge Univ. Press (2008)
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, (T Li, editor), Higher Ed. Press, Beijing (2002) 405–414
  • N Goodman, Overtwisted open books from sobering arcs, Algebr. Geom. Topol. 5 (2005) 1173–1195
  • K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309–368
  • B Ozbagci, A I Stipsicz, Surgery on contact $3$–manifolds and Stein surfaces, Bolyai Society Math. Studies 13, Springer, Berlin (2004)
  • E Pavelescu, Braids and open book decompositions, PhD thesis, University of Pennsylvania (2008) Available at \setbox0\makeatletter\@url http://www.math.upenn.edu/grad/dissertations/ElenaPavelescuThesis.pdf {\unhbox0