Algebraic & Geometric Topology

Knot Floer homology and rational surgeries

Peter S Ozsváth and Zoltán Szabó

Full-text: Open access

Abstract

Let K be a rationally null-homologous knot in a three-manifold Y. We construct a version of knot Floer homology in this context, including a description of the Floer homology of a three-manifold obtained as Morse surgery on the knot K. As an application, we express the Heegaard Floer homology of rational surgeries on Y along a null-homologous knot K in terms of the filtered homotopy type of the knot invariant for K. This has applications to Dehn surgery problems for knots in S3. In a different direction, we use the techniques developed here to calculate the Heegaard Floer homology of an arbitrary Seifert fibered three-manifold with even first Betti number.

Article information

Source
Algebr. Geom. Topol., Volume 11, Number 1 (2011), 1-68.

Dates
Received: 22 May 2005
Revised: 14 September 2010
Accepted: 17 September 2010
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715180

Digital Object Identifier
doi:10.2140/agt.2011.11.1

Mathematical Reviews number (MathSciNet)
MR2764036

Zentralblatt MATH identifier
1226.57044

Subjects
Primary: 57R58: Floer homology
Secondary: 57M27: Invariants of knots and 3-manifolds 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Keywords
Floer homology Dehn surgery

Citation

Ozsváth, Peter S; Szabó, Zoltán. Knot Floer homology and rational surgeries. Algebr. Geom. Topol. 11 (2011), no. 1, 1--68. doi:10.2140/agt.2011.11.1. https://projecteuclid.org/euclid.agt/1513715180


Export citation

References

  • J Berge, Some knots with surgeries giving lens spaces, Unpublished manuscript
  • S A Bleiler, C D Hodgson, J R Weeks, Cosmetic surgery on knots, from: “Proceedings of the Kirbyfest (Berkeley, CA, 1998)”, (J Hass, M Scharlemann, editors), Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 23–34
  • D Coulson, O A Goodman, C D Hodgson, W D Neumann, Computing arithmetic invariants of $3$–manifolds, Experiment. Math. 9 (2000) 127–152
  • Y Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277–293
  • J B Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73–80
  • K A Frøyshov, The Seiberg–Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996) 373–390
  • M Furuta, B Steer, Seifert fibred homology $3$–spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38–102
  • C M Gordon, Some aspects of classical knot theory, from: “Knot theory (Proc. Sem., Plans-sur-Bex, 1977)”, (J-C Hausmann, editor), Lecture Notes in Math. 685, Springer, Berlin (1978) 1–60
  • S Jabuka, T E Mark, On the Heegaard Floer homology of a surface times a circle, Adv. Math. 218 (2008) 728–761
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457–546
  • M Lackenby, Dehn surgery on knots in $3$–manifolds, J. Amer. Math. Soc. 10 (1997) 835–864
  • Y Mathieu, Closed $3$–manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications 1 (1992) 279–296
  • A Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed $3$–manifolds, Geom. Topol. 9 (2005) 991–1042
  • W Neumann, Private communication (2005)
  • P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179–261
  • P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615–639
  • P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185–224
  • P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159–1245
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59–85
  • P Ozsváth, Z Szabó, Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005) 705–745
  • P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281–1300
  • P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1–33
  • P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326–400
  • P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101–153
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
  • P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
  • H Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933) 147–238
  • V Turaev, Torsions of $3$–dimensional manifolds, Progress in Math. 208, Birkhäuser Verlag, Basel (2002)
  • J Wang, Cosmetic surgeries on genus one knots, Algebr. Geom. Topol. 6 (2006) 1491–1517
  • J R Weeks, SnapPea: A computer program for creating and studying hyperbolic $3$–manifolds Available at \setbox0\makeatletter\@url http://www.geometrygames.org/SnapPea/ {\unhbox0