Algebraic & Geometric Topology

The Whitehead group and the lower algebraic $K$–theory of braid groups on $\mathbb{S}^2$ and $\mathbb{R}P^2$

Daniel Juan-Pineda and Silvia Millan-López

Full-text: Open access

Abstract

Let M=S2 or P2. Let PBn(M) and Bn(M) be the pure and the full braid groups of M respectively. If Γ is any of these groups, we show that Γ satisfies the Farrell–Jones Fibered Isomorphism Conjecture and use this fact to compute the lower algebraic K–theory of the integral group ring Γ, for Γ=PBn(M). The main results are that for Γ=PBn(S2), the Whitehead group of Γ, K̃0(Γ) and Ki(Γ) vanish for i1 and n>0. For Γ=PBn(P2), the Whitehead group of Γ vanishes for all n>0, K̃0(Γ) vanishes for all n>0 except for the cases n=2,3 and Ki(Γ) vanishes for all i1.

Article information

Source
Algebr. Geom. Topol., Volume 10, Number 4 (2010), 1887-1903.

Dates
Received: 18 September 2008
Revised: 14 June 2010
Accepted: 13 August 2010
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715159

Digital Object Identifier
doi:10.2140/agt.2010.10.1887

Mathematical Reviews number (MathSciNet)
MR2728479

Zentralblatt MATH identifier
1219.19004

Subjects
Primary: 19A31: $K_0$ of group rings and orders 19B28: $K_1$of group rings and orders [See also 57Q10]
Secondary: 55N25: Homology with local coefficients, equivariant cohomology

Keywords
Whitehead group braid group

Citation

Juan-Pineda, Daniel; Millan-López, Silvia. The Whitehead group and the lower algebraic $K$–theory of braid groups on $\mathbb{S}^2$ and $\mathbb{R}P^2$. Algebr. Geom. Topol. 10 (2010), no. 4, 1887--1903. doi:10.2140/agt.2010.10.1887. https://projecteuclid.org/euclid.agt/1513715159


Export citation

References

  • D R Anderson, W C Hsiang, The functors $K\sb{-i}$ and pseudo-isotopies of polyhedra, Ann. of Math. $(2)$ 105 (1977) 201–223
  • C S Aravinda, F T Farrell, S K Roushon, Algebraic $K$–theory of pure braid groups, Asian J. Math. 4 (2000) 337–343
  • H Bass, Algebraic $K$–theory, W. A. Benjamin, New York-Amsterdam (1968)
  • E Berkove, D Juan-Pineda, Q Lu, Algebraic $K$–theory of mapping class groups, $K$–Theory 32 (2004) 83–100
  • E Berkove, D Juan-Pineda, K Pearson, A geometric approach to the lower algebraic $K$–theory of Fuchsian groups, Topology Appl. 119 (2002) 269–277
  • J van Buskirk, Braid groups of compact $2$–manifolds with elements of finite order, Trans. Amer. Math. Soc. 122 (1966) 81–97
  • D W Carter, Lower $K$–theory of finite groups, Comm. Algebra 8 (1980) 1927–1937
  • F Cohen, J Pakianathan, Notes on configuration spaces and braid groups (1999) Available at www.math.rochester.edu/people/faculty/jonpak/
  • C W Curtis, I Reiner, Methods of representation theory. Vol. II. With applications to finite groups and orders, Pure and Applied Math., Wiley, New York (1987)
  • J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$– and $L$–theory, $K$–Theory 15 (1998) 201–252
  • E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111–118
  • E Fadell, J Van Buskirk, The braid groups of $E\sp{2}$ and $S\sp{2}$, Duke Math. J. 29 (1962) 243–257
  • F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249–297
  • F T Farrell, S K Roushon, The Whitehead groups of braid groups vanish, Internat. Math. Res. Notices (2000) 515–526
  • D L Gonçalves, J Guaschi, The braid groups of the projective plane, Algebr. Geom. Topol. 4 (2004) 757–780
  • D L Gonçalves, J Guaschi, The braid groups of the projective plane and the Fadell–Neuwirth short exact sequence, Geom. Dedicata 130 (2007) 93–107
  • D L Gonçalves, J Guaschi, Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane, J. Group Theory 13 (2010) 277–294
  • D Juan-Pineda, S Millan-López, Invariants associated to the pure braid group of the sphere, Bol. Soc. Mat. Mexicana $(3)$ 12 (2006) 27–32
  • D Juan-Pineda, S Mill'an-López, The braid groups of $\dbR P^2$ satisfy the fibered isomorphism conjecture, from: “Cohomology of groups and algebraic $K$–theory”, (L Ji, K Liu, S-T Yau, editors), Adv. Lectures in Math. 12, International Press, Somerville, MA (2010) 187–195
  • M E Keating, On the $K$–theory of the quaternion group, Mathematika 20 (1973) 59–62
  • J-F Lafont, I J Ortiz, Relating the Farrell Nil-groups to the Waldhausen Nil-groups, Forum Math. 20 (2008) 445–455
  • J Martinet, Modules sur l'algèbre du groupe quaternionien, Ann. Sci. École Norm. Sup. $(4)$ 4 (1971) 399–408
  • R Oliver, Whitehead groups of finite groups, London Math. Soc. Lecture Note Ser. 132, Cambridge Univ. Press (1988)
  • F Quinn, Ends of maps. II, Invent. Math. 68 (1982) 353–424
  • J-P Serre, Linear representations of finite groups, Graduate Texts in Math. 42, Springer, New York (1977) Translated from the second French edition by L L Scott
  • J-P Serre, Trees, Springer Monogr. in Math., Springer, Berlin (2003) Translated from the French original by J Stillwell, Corrected 2nd printing of the 1980 English translation
  • C T C Wall, Poincaré complexes. I, Ann. of Math. $(2)$ 86 (1967) 213–245