Algebraic & Geometric Topology

The twisted Floer homology of torus bundles

Yinghua Ai and Thomas D Peters

Full-text: Open access

Abstract

We prove an exact sequence for ω–twisted Heegaard Floer homology. As a corollary, given a torus bundle Y over the circle and a cohomology class [ω]H2(Y;) which evaluates nontrivially on the fiber, we compute the Heegaard Floer homology of Y with twisted coefficients in the universal Novikov ring.

Article information

Source
Algebr. Geom. Topol., Volume 10, Number 2 (2010), 679-695.

Dates
Received: 22 November 2008
Revised: 28 October 2009
Accepted: 26 November 2009
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715111

Digital Object Identifier
doi:10.2140/agt.2010.10.679

Mathematical Reviews number (MathSciNet)
MR2606797

Zentralblatt MATH identifier
1209.57006

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 53D40: Floer homology and cohomology, symplectic aspects

Keywords
Floer homology torus bundles

Citation

Ai, Yinghua; Peters, Thomas D. The twisted Floer homology of torus bundles. Algebr. Geom. Topol. 10 (2010), no. 2, 679--695. doi:10.2140/agt.2010.10.679. https://projecteuclid.org/euclid.agt/1513715111


Export citation

References

  • Y Ai, Y Ni, Two applications of twisted Floer homology, Int. Math. Res. Not. (2009) 3726–3746
  • J A Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008) 963–992
  • H Cartan, S Eilenberg, Homological algebra, Princeton Landmarks in Math., Princeton Univ. Press (1999) With an appendix by D A Buchsbaum, Reprint of the 1956 original
  • P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151–1169
  • P J Hilton, U Stammbach, A course in homological algebra, Graduate Texts in Math. 4, Springer, New York (1971)
  • S P Humphries, Generators for the mapping class group, from: “Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977)”, (R A Fenn, editor), Lecture Notes in Math. 722, Springer, Berlin (1979) 44–47
  • S Jabuka, T E Mark, Product formulae for Ozsváth–Szabó $4$–manifold invariants, Geom. Topol. 12 (2008) 1557–1651
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457–546
  • Y Lekili, Heegaard Floer homology of broken fibrations over the circle
  • Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
  • Y Ni, Heegaard Floer homology and fibred $3$–manifolds, Amer. J. Math. 131 (2009) 1047–1063
  • P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179–261
  • P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159–1245
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1–34
  • P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1–33
  • P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326–400
  • P Ozsváth, Z Szabó, Lectures on Heegaard Floer homology, from: “Floer homology, gauge theory, and low-dimensional topology”, (D A Ellwood, P Ozsváth, A Stipsicz, Z Szabó, editors), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 29–70
  • J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
  • Z Wu, Perturbed Floer homology of some fibered three-manifolds, Algebr. Geom. Topol. 9 (2009) 337–350