Algebraic & Geometric Topology

The localized skein algebra is Frobenius

Nel Abdiel and Charles Frohman

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/agt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

When A in the Kauffman bracket skein relation is set equal to a primitive n th root of unity ζ with n not divisible by 4, the Kauffman bracket skein algebra Kζ(F) of a finite-type surface F is a ring extension of the SL2–character ring of the fundamental group of F. We localize by inverting the nonzero characters to get an algebra S1Kζ(F) over the function field of the corresponding character variety. We prove that if F is noncompact, the algebra S1Kζ(F) is a symmetric Frobenius algebra. Along the way we prove K(F) is finitely generated, Kζ(F) is a finite-rank module over the coordinate ring of the corresponding character variety, and learn to compute the trace that makes the algebra Frobenius.

Article information

Source
Algebr. Geom. Topol., Volume 17, Number 6 (2017), 3341-3373.

Dates
Received: 11 January 2015
Revised: 11 May 2017
Accepted: 27 May 2017
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1510841508

Digital Object Identifier
doi:10.2140/agt.2017.17.3341

Mathematical Reviews number (MathSciNet)
MR3709648

Zentralblatt MATH identifier
06791650

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds

Keywords
skein algebra Frobenius

Citation

Abdiel, Nel; Frohman, Charles. The localized skein algebra is Frobenius. Algebr. Geom. Topol. 17 (2017), no. 6, 3341--3373. doi:10.2140/agt.2017.17.3341. https://projecteuclid.org/euclid.agt/1510841508


Export citation

References

  • J W Barrett, Skein spaces and spin structures, Math. Proc. Cambridge Philos. Soc. 126 (1999) 267–275
  • F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, I: Invariants and miraculous cancellations, Invent. Math. 204 (2016) 195–243
  • D Bullock, Rings of ${\rm SL}_2({\bf C})$–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521–542
  • D Bullock, A finite set of generators for the Kauffman bracket skein algebra, Math. Z. 231 (1999) 91–101
  • D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265–277
  • D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Amer. Math. Soc. 128 (2000) 923–931
  • A Fathi, F Laudenbach, V Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France, Paris (1979)
  • C Frohman, N Abdiel, Frobenius algebras derived from the Kauffman bracket skein algebra, J. Knot Theory Ramifications 25 (2016) art. id. 1650016
  • C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877–4888
  • C Frohman, J Kania-Bartoszynska, The structure of the Kauffman bracket Skein algebra at roots of unity, preprint (2016)
  • P Gordan, Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten, Math. Ann. 6 (1873) 23–28
  • J Hoste, J H Przytycki, The $(2,\infty)$–skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theory Ramifications 2 (1993) 321–333
  • T T Q Lê, On Kauffman bracket skein modules at roots of unity, Algebr. Geom. Topol. 15 (2015) 1093–1117
  • G Muller, Skein and cluster algebras of marked surfaces, Quantum Topol. 7 (2016) 435–503
  • J H Przytycki, A S Sikora, On skein algebras and ${\rm Sl}_2({\bf C})$–character varieties, Topology 39 (2000) 115–148
  • A S Sikora, B W Westbury, Confluence theory for graphs, Algebr. Geom. Topol. 7 (2007) 439–478
  • D P Thurston, Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA 111 (2014) 9725–9732
  • J G van der Corput, Über Systeme von linear-homogenen Gleichungen und Ungleichungen, Proc. Akad. Wet. Amsterdam 34 (1931) 368–371