Algebraic & Geometric Topology

On intersecting subgroups of Brunnian link groups

Fengchun Lei, Jie Wu, and Yu Zhang

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let G(Ln) be the link group of a Brunnian n–link Ln and Ri be the normal closure of the ith meridian in G(Ln) for 1 i n. In this article, we show that the intersecting subgroup R1 R2 Rm coincides with the iterated symmetric commutator subgroup σΣm[[Rσ(1),Rσ(2)],,Rσ(m)] for 2 m n using the techniques of homotopy theory. Moreover, we give a presentation for the intersecting subgroup R1 R2 Rn.

Article information

Algebr. Geom. Topol., Volume 16, Number 2 (2016), 1043-1061.

Received: 8 April 2015
Accepted: 27 July 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 55Q40: Homotopy groups of spheres
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Brunnian link homotopy colimit link group symmetric commutator subgroup


Lei, Fengchun; Wu, Jie; Zhang, Yu. On intersecting subgroups of Brunnian link groups. Algebr. Geom. Topol. 16 (2016), no. 2, 1043--1061. doi:10.2140/agt.2016.16.1043.

Export citation


  • V,G Bardakov, R Mikhailov, V,V Vershinin, J Wu, Brunnian braids on surfaces, Algebr. Geom. Topol. 12 (2012) 1607–1648
  • A,J Berrick, F,R Cohen, Y,L Wong, J Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006) 265–326
  • W,A Bogley, J,H,C Whitehead's asphericity question, from “Two dimensional homotopy and combinatorial group theory” (C Hog-Angeloni, W Metzler, editors), London Math. Soc. Lecture Note Ser. 197, Cambridge Univ. Press, Cambridge (1993) 309–334
  • R Brown, J-L Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311–335
  • H Brunn, Üeber Verkettung, Sitzungberichte der Bayerischer Akad. Wiss. Math.-Phys. 22 (1892) 77–99
  • K,S Chichak, S,J Cantrill, A,R Pease, S-H Chiu, G,W,V Cave, J,L Atwood, J,F Stoddart, Molecular Borromean Rings, Science 304 (2004) 1308–1312
  • F,R Cohen, J Wu, On braid groups and homotopy groups, from “Groups, homotopy and configuration spaces” (N Iwase, T Kohno, R Levi, D Tamaki, J Wu, editors), Geom. Topol. Monogr. 13 (2008) 169–193
  • F,R Cohen, J Wu, Artin's braid groups, free groups, and the loop space of the 2-sphere, Q. J. Math. 62 (2011) 891–921
  • H Debrunner, Links of Brunnian type, Duke Math. J. 28 (1961) 17–23
  • G Ellis, R Mikhailov, A colimit of classifying spaces, Adv. Math. 223 (2010) 2097–2113
  • F Fang, F Lei, J Wu, The symmetric commutator homology of link towers and homotopy groups of $3$–manifolds, Commun. Math. Stat. 3 (2015) 497–526
  • G,G Gurzo, The group of smooth braids, from “16th All-Union Algebra Conference”, Abstract II, Leningrad (1981) 39–40
  • K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1–83
  • K Habiro, Brunnian links, claspers and Goussarov–Vassiliev finite type invariants, Math. Proc. Cambridge Philos. Soc. 142 (2007) 459–468
  • K Habiro, J-B Meilhan, On the Kontsevich integral of Brunnian links, Algebr. Geom. Topol. 6 (2006) 1399–1412
  • K Habiro, J-B Meilhan, Finite type invariants and Milnor invariants for Brunnian links, Internat. J. Math. 19 (2008) 747–766
  • D,L Johnson, Towards a characterization of smooth braids, Math. Proc. Cambridge Philos. Soc. 92 (1982) 425–427
  • H Levinson, Decomposable braids and linkages, Trans. Amer. Math. Soc. 178 (1973) 111–126
  • H Levinson, Decomposable braids as subgroups of braid groups, Trans. Amer. Math. Soc. 202 (1975) 51–55
  • J,Y Li, J Wu, On symmetric commutator subgroups, braids, links and homotopy groups, Trans. Amer. Math. Soc. 363 (2011) 3829–3852
  • J-L Loday, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra 24 (1982) 179–202
  • W Magnus, A Karrass, D Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience, New York (1966)
  • B Mangum, T Stanford, Brunnian links are determined by their complements, Algebr. Geom. Topol. 1 (2001) 143–152
  • J-B Meilhan, A Yasuhara, Whitehead double and Milnor invariants, Osaka J. Math. 48 (2011) 371–381
  • J Milnor, Link groups, Ann. of Math. 59 (1954) 177–195
  • H,A Miyazawa, A Yasuhara, Classification of $n$–component Brunnian links up to $C\sb n$–move, Topology Appl. 153 (2006) 1643–1650
  • M Ozawa, On a genus of a closed surface containing a Brunnian link, Tokyo J. Math. 31 (2008) 347–349
  • J Wu, Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc. 130 (2001) 489–513