Algebraic & Geometric Topology

Floer homology and splicing knot complements

Eaman Eftekhary

Full-text: Open access

Abstract

We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold Y (K1,K2) obtained by splicing the complements of the knots Ki Y i, i = 1,2, in terms of the knot Floer homology of K1 and K2. We also present a few applications. If hni denotes the rank of the Heegaard Floer group HFK̂ for the knot obtained by n–surgery over Ki, we show that the rank of HF̂(Y (K1,K2)) is bounded below by

|(h1 h 11)(h 2 h 12) (h 01 h 11)(h 02 h 12)|.

We also show that if splicing the complement of a knot K Y with the trefoil complements gives a homology sphere L–space, then K is trivial and Y is a homology sphere L–space.

Article information

Source
Algebr. Geom. Topol., Volume 15, Number 6 (2015), 3155-3213.

Dates
Received: 4 November 2013
Revised: 19 February 2015
Accepted: 1 March 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1510841064

Digital Object Identifier
doi:10.2140/agt.2015.15.3155

Mathematical Reviews number (MathSciNet)
MR3450759

Zentralblatt MATH identifier
1335.57020

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57R58: Floer homology

Keywords
Floer homology splicing essential torus

Citation

Eftekhary, Eaman. Floer homology and splicing knot complements. Algebr. Geom. Topol. 15 (2015), no. 6, 3155--3213. doi:10.2140/agt.2015.15.3155. https://projecteuclid.org/euclid.agt/1510841064


Export citation

References

  • A Alishahi, E Eftekhary, A refinement of sutured Floer homology, J. Symplectic Geom. 13 (2015) 609–743
  • E Eftekhary, Longitude Floer homology and the Whitehead double, Algebr. Geom. Topol. 5 (2005) 1389–1418
  • E Eftekhary, A combinatorial approach to surgery formulas in Heegaard Floer homology, Algebr. Geom. Topol. 9 (2009) 2225–2246
  • E Eftekhary, Bordered Floer homology and existence of incompressible tori in homology spheres, preprint (2015)
  • M Hedden, A,S Levine, Splicing knot complements and bordered Floer homology, preprint To appear in J. Reine Angew. Math.
  • R Lipshitz, O Ozsváth, D Thurston, Bordered Heegaard Floer homology: Invariance and pairing, preprint (2014)
  • R Lipshitz, O Ozsváth, D Thurston, Notes on bordered Floer homology, preprint (2014)
  • C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633–660
  • C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339–2412
  • P Ozsváth, A,I Stipsicz, Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu 9 (2010) 601–632
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1–33
  • P,S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101–153
  • S Sarkar, Maslov index formulas for Whitney $n$–gons, J. Symplectic Geom. 9 (2011) 251–270
  • S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213–1236