Arkiv för Matematik

Weighted integral formulas on manifolds

Elin Götmark

Full-text: Open access

Abstract

We present a method of finding weighted Koppelman formulas for (p, q)-forms on n-dimensional complex manifolds X which admit a vector bundle of rank n over X×X, such that the diagonal of X×X has a defining section. We apply the method to ℙn and find weighted Koppelman formulas for (p, q)-forms with values in a line bundle over ℙn. As an application, we look at the cohomology groups of (p, q)-forms over ℙn with values in various line bundles, and find explicit solutions to the $\overline{\partial}$-equation in some of the trivial groups. We also look at cohomology groups of (0, q)-forms over ℙn×ℙm with values in various line bundles. Finally, we apply our method to developing weighted Koppelman formulas on Stein manifolds.

Article information

Source
Ark. Mat., Volume 46, Number 1 (2008), 43-68.

Dates
Received: 13 November 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907021

Digital Object Identifier
doi:10.1007/s11512-007-0056-7

Mathematical Reviews number (MathSciNet)
MR2379683

Zentralblatt MATH identifier
1153.32014

Rights
2007 © Institut Mittag-Leffler

Citation

Götmark, Elin. Weighted integral formulas on manifolds. Ark. Mat. 46 (2008), no. 1, 43--68. doi:10.1007/s11512-007-0056-7. https://projecteuclid.org/euclid.afm/1485907021


Export citation

References

  • Andersson, M., Lp estimates for the $\bar\partial$-equation in analytic polyhedra in Stein manifolds, in Several Complex Variables (Stockholm, 1987/1988), Math. Notes 38, pp. 34–47, Princeton Univ. Press, Princeton, NJ, 1993.
  • Andersson, M., Integral representation with weights. I, Math. Ann. 326 (2003), 1–18.
  • Andersson, M., Integral representation with weights. II. Division and interpolation, Math. Z. 254 (2006), 315–332.
  • Berenstein, C. A., Gay, R., Vidras, A. and Yger, A., Residue Currents and Bézout Identities, Progr. Math. 114, Birkhäuser, Basel, 1993.
  • Berenstein, C. A. and Yger, A., Effective Bézout identities in Q[z1,..., zn], Acta Math. 166 (1991), 69–120.
  • Berndtsson, B., A formula for interpolation and division in Cn, Math. Ann. 263 (1983), 399–418.
  • Berndtsson, B., Integral formulas on projective space and the Radon transform of Gindikin–Henkin–Polyakov, Publ. Mat. 32 (1988), 7–41.
  • Berndtsson, B., Cauchy–Leray forms and vector bundles, Ann. Sci. École Norm. Sup. 24:3 (1991), 319–337.
  • Berndtsson, B. and Andersson, M., Henkin–Ramírez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1982), v–vi, 91–110.
  • Berndtsson, B. and Passare, M., Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal. 84 (1989), 358–372.
  • Demailly, J.-P. and Laurent-Thiébaut, C., Formules intégrales pour les formes différentielles de type (p, q) dans les variétés de Stein, Ann. Sci. École Norm. Sup. 20 (1987), 579–598.
  • Demailly, J.-P., Complex Analytic and Differential Geometry, in preparation.http://www-fourier.ujf-grenoble.fr/∼demailly/books.html.
  • Dickenstein, A. and Sessa, C., Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417–434.
  • Fornaess, J. E., Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529–569.
  • Götmark, E., Some applications of weighted integral formulas, Licentiate thesis, 2005.
  • Henkin, G. M., Integral representation of functions in strongly pseudoconvex regions, and applications to the $\bar\partial$-problem, Mat. Sb. 82(124) (1970), 300–308 (Russian). English transl.: Math. USSR-Sb. 11 (1970), 273–281.
  • Henkin, G. M., H. Lewy’s equation, and analysis on a pseudoconvex manifold. II, Mat. Sb. 102(144) (1977), 71–108, 151 (Russian). English transl.: Math. USSR-Sb. 102:(144) (1977), 63–94.
  • Henkin, G. M. and Leiterer, J., Global integral formulas for solving the $\bar\partial$-equation on Stein manifolds, Ann. Polon. Math. 39 (1981), 93–116.
  • Passare, M., Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75–152.
  • Polyakov, P. L. and Henkin, G. M., Homotopy formulas for the $\bar\partial$-operator on CPn and the Radon–Penrose transform, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 566–597, 639 (Russian). English transl.: Math. USSR-Izv. 50 (1986), 555–587.
  • Quillen, D., Superconnections and the Chern character, Topology 24 (1985), 89–95.
  • Ramírez de Arellano, E., Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/1970), 172–187.
  • Skoda, H., Valeurs au bord pour les solutions de l’opérateur d′′ dans les ouverts strictement pseudoconvexes, C. R. Math. Acad. Sci. Paris, Sér. A–B 280 (1975), A633–A636.
  • Zériahi, A., Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines, Ann. Inst. Fourier (Grenoble) 37:2 (1987), 79–104.