Arkiv för Matematik

Extremal discs and holomorphic extension from convex hypersurfaces

Luca Baracco, Alexander Tumanov, and Giuseppe Zampieri

Full-text: Open access

Abstract

Let D be a convex domain with smooth boundary in complex space and let f be a continuous function on the boundary of D. Suppose that f holomorphically extends to the extremal discs tangent to a convex subdomain of D. We prove that f holomorphically extends to D. The result partially answers a conjecture by Globevnik and Stout of 1991.

Article information

Source
Ark. Mat., Volume 45, Number 1 (2007), 1-13.

Dates
Received: 15 September 2005
Revised: 3 June 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898968

Digital Object Identifier
doi:10.1007/s11512-006-0016-7

Mathematical Reviews number (MathSciNet)
MR2312949

Zentralblatt MATH identifier
1151.32005

Rights
2006 © Institut Mittag-Leffler

Citation

Baracco, Luca; Tumanov, Alexander; Zampieri, Giuseppe. Extremal discs and holomorphic extension from convex hypersurfaces. Ark. Mat. 45 (2007), no. 1, 1--13. doi:10.1007/s11512-006-0016-7. https://projecteuclid.org/euclid.afm/1485898968


Export citation

References

  • Agranovsky, M. L. and Semenov, A. M., Boundary analogues of the Hartogs theorem, Sibirsk. Mat. Zh. 32 (1991), 168–170, 222 (Russian). English transl: Siberian Math. J. 32 (1991), 137–139.
  • Berenstein, C., Chang, D.-C., Pascuas, D. and Zalcman, L., Variations on the theorem of Morera, in The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., 137, pp. 63–78, Amer. Math. Soc., Providence, RI, 1992.
  • Boggess, A., CR manifolds and the tangential Cauchy–Riemann complex, CRC Press, Boca Raton, FL, 1991.
  • Dinh, T.-C., Conjecture de Globevnik–Stout et théorème de Morera pur une châine holomorphe, Ann. Fac. Sci. Toulouse Math. 8 (1999), 235–257.
  • Globevnik, J., On holomorphic extensions from spheres in C2, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 113–120.
  • Globevnik, J., A family of lines for testing holomorphy in the ball of C2, Indiana Univ. Math. J. 36 (1987), 639–644.
  • Globevnik, J. and Stout, E. L., Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J. 64 (1991), 571–615.
  • Hanges, N. and Trèves, F., Propagation of holomorphic extendability of CR functions, Math. Ann. 263 (1983), 157–177.
  • Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.
  • Rudin, W., Function theory in the unit ball ofCn, Grundlehren der Mathematischen Wissenschaften, 241, Springer, New York–Berlin, 1980.
  • Stout, E. L., The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44 (1977), 105–108.
  • Tumanov, A., Connections and propagation of analyticity for CR functions, Duke Math. J. 73 (1994), 1–24.
  • Tumanov, A., Thin discs and a Morera theorem for CR functions, Math. Z. 226 (1997), 327–334.
  • Tumanov, A., A Morera type theorem in the strip, Math. Res. Lett. 11 (2004), 23–29.