Arkiv för Matematik

  • Ark. Mat.
  • Volume 42, Number 2 (2004), 283-300.

E′ and its relation with vector-valued functions on E

Daniel Carando and Silvia Lassalle

Full-text: Open access

Abstract

We study the relation between different spaces of vector-valued polynomials and analytic functions over dual-isomorphic Banach spaces. Under conditions of regularity on E and F, we show that the spaces of X-valuedn-homogeneous polynomials and analytic functions of bounded type on E and F are isomorphic whenever X is a dual space. Also, we prove that many of the usual subspaces of polynomials and analytic functions on E and F are isomorphic without conditions on the involved spaces.

Article information

Source
Ark. Mat., Volume 42, Number 2 (2004), 283-300.

Dates
Received: 8 April 2003
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898854

Digital Object Identifier
doi:10.1007/BF02385480

Mathematical Reviews number (MathSciNet)
MR2101388

Zentralblatt MATH identifier
1058.46024

Rights
2004 © Institut Mittag-Leffler

Citation

Carando, Daniel; Lassalle, Silvia. E′ and its relation with vector-valued functions on E. Ark. Mat. 42 (2004), no. 2, 283--300. doi:10.1007/BF02385480. https://projecteuclid.org/euclid.afm/1485898854


Export citation

References

  • Aron, R. M. and Berner, P. D., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3–24.
  • Aron, R. M. and Dineen, S., Q-reflexive Banach spaces, Rocky Mountain J. Math. 27 (1997), 1009–1025.
  • Aron, R. M., Hervés, C. and Valdivia, M., Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189–204.
  • Aron, R. M., Lindström, M., Ruess, W. M. and Ryan, R., Uniform factorization for compact sets of operators, Proc. Amer. Math. Soc. 127 (1999), 1119–1125.
  • Cabello Sánchez, F., Castillo, J. M. F. and García, R., Polynomials on dualisomorphic spaces, Ark. Mat. 38 (2000), 37–44.
  • Carando, D., Extensión de polinomios en espacios de Banach, Ph. D. thesis, Universidad de Buenos Aires, Buenos Aires, 1998.
  • Carando, D., Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), 359–372.
  • Carando, D. and Dimant, V., Duality in spaces of nuclear and integral polynomials, J. Math. Anal. Appl. 241 (2000), 107–121.
  • Carando, D. and Zalduendo, I., A Hahn-Banach theorem for integral polynomials, Proc. Amer. Math. Soc. 127 (1999), 241–250.
  • Defant, A. and Floret, K., Tensor Norms and Operators Ideals, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
  • Díaz, J. C. and Dineen, S., Polynomials on stable spaces, Ark. Mat. 36 (1998), 87–96.
  • Diestel, J. and Uhl, J. J., Jr., Vector Measures, Mathematical Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
  • Dimant, V., Strongly p-summing multilinear operators, J. Math. Anal. Appl. 278 (2003), 182–193.
  • Dimant, V., Galindo, P., Maestre, M. and Zalduendo, I., Integral holomorphic functions, Studia Math. 160 (2004), 83–99.
  • Dineen, S., Complex Analysis on Infinite-Dimensional Spaces, Springer-Verlag, London, 1999.
  • Galindo, P., García, D., Maestre, M. and Mujica, J., Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55–76.
  • García, D., Maestre, M. and Rueda, P., Weighted spaces of holomorphic functions on Banach spaces, Studia Math. 138 (2000), 1–24.
  • González, M. and Gutiérrez, J. M., Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715–1721.
  • Jaramillo, J. A. and Moraes, L. A., Duality and reflexivity in spaces of polynomials, Arch. Math. (Basel)74 (2000), 282–293.
  • Jaramillo, J. A., Prieto, A. and Zalduendo, I., The bidual of the space of polynomials on a Banach space, Math. Proc. Cambridge Philos. Soc. 122 (1997), 457–471.
  • Lassalle, S., Polinomios sobre un espacio de Banach y su relación con el dual, Ph.D. thesis, Universidad de Buenos Aires, Buenos Aires, 2001.
  • Lassalle, S. and Zalduendo, I., To what extent does the dual Banach space E′ determine the polynomials over E?, Ark. Mat. 38 (2000), 343–354.
  • Nicodemi, O., Homomorphisms of algebras of germs of holomorphic functions, in Functional Analysis, Holomorphy and Approximation Theory (Rio de Janeiro, 1978), Lecture Notes in Math. 843, pp. 534–546. Springer-Verlag, Berlin-Heidelberg, 1981.
  • Toma, E., Aplicacoes holomorfas e polinomios τ-continuos, Ph. D. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1993.
  • Villanueva, I., Integral mappings between Banach spaces, J. Math. Anal. Appl. 279 (2003), 56–70.
  • Zalduendo, I., Extending polynomials—A survey, Publ. Dep. Análisis Mat., Univ. Complutense de Madrid, Madrid, 1998.