Arkiv för Matematik

Interpolating sequences in the ball of Cn

Éric Amar

Full-text: Open access

Abstract

LetB be the unit ball of Cn, I give necessary conditions on sequence S of points in B to be H(B) interpolating in term of a Cn valued holomorphic function zero on S (a substitute for the interpolating Blaschke product).

These conditions are sufficient to prove that the sequence S is interpolating for ∩p>1 (B) and is also interpolating for Hp(B) for 1≤p<∞.

Article information

Source
Ark. Mat., Volume 38, Number 1 (2000), 1-20.

Dates
Received: 24 June 1996
Revised: 24 February 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898662

Digital Object Identifier
doi:10.1007/BF02384486

Mathematical Reviews number (MathSciNet)
MR1749354

Zentralblatt MATH identifier
1038.32009

Rights
2000 © Institut Mittag-Leffler

Citation

Amar, Éric. Interpolating sequences in the ball of C n. Ark. Mat. 38 (2000), no. 1, 1--20. doi:10.1007/BF02384486. https://projecteuclid.org/euclid.afm/1485898662


Export citation

References

  • Amar, D. and Amar, É., Sur les suites d'interpolation en plusieurs variables, Pacific J. Math. 75 (1978), 15–20.
  • Amar, É., Suites d'interpolation dans le spectre d'une algèbre d'opérateurs, Thèse d'Etat, Université Paris Sud, Orsay, 1977.
  • Amar, É., Extension de formes $\bar \partial _b $ fermées et solutions de l'équation $\bar \partial _b u = f$ , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 (1980), 155–179.
  • Amar, É., Extension de fonctions holomorphes et courants, Bull. Sci. Math. 107 (1983), 25–48.
  • Amar, É. and Bonami, A., Mesure de Carleson d'ordre α et solution au bord de l'équation $\bar \partial $ , Bull. Soc. Math. France 107 (1979), 23–48.
  • Bernard, A., Algèbre quotient d'algèbre uniforme, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), 1101–1104.
  • Berndtsson, B., Interpolating sequences for H in the ball, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), 1–10.
  • Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
  • Jones, P. W., L estimates for the $\bar \partial $ problem in a half plane, Acta Math. 150 (1983), 137–152.
  • Rudin, W., Function Theory in the Unit Ball of Cn, Grundlehren Math. Wiss, 241, Springer-Verlag, Berlin-Heidelberg, 1980.
  • Shapiro, H. and Shields, A., On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513–532.
  • Skoda, H., Valeurs au bord pour les solutions de l'opérateur d" et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225–299.
  • Varopoulos, N., Sur un problème d'interpolation, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1539-A1542.