Arkiv för Matematik

  • Ark. Mat.
  • Volume 37, Number 2 (1999), 345-356.

A Dirichlet principle for the complex Monge-Ampère operator

Leif Persson

Full-text: Open access

Abstract

A solution to a Dirichlet problem for the complex Monge-Ampère operator is characterized as a minimizer of an energy functional. A mutual energy estimate and a generalization of Hölder's inequality is proved. A comparison is made with corresponding results in classical potential theory.

Article information

Source
Ark. Mat., Volume 37, Number 2 (1999), 345-356.

Dates
Received: 11 August 1997
Revised: 15 June 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898639

Digital Object Identifier
doi:10.1007/BF02412219

Mathematical Reviews number (MathSciNet)
MR1714764

Zentralblatt MATH identifier
1045.34056

Rights
1999 © Institut Mittag-Leffler

Citation

Persson, Leif. A Dirichlet principle for the complex Monge-Ampère operator. Ark. Mat. 37 (1999), no. 2, 345--356. doi:10.1007/BF02412219. https://projecteuclid.org/euclid.afm/1485898639


Export citation

References

  • Bedford, E. and Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1–44.
  • Bedford, E. and Taylor, B. A., A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40.
  • Cegrell, U., Pluricomplex energy, Acta Math. 180 (1998), 187–217.
  • Cegrell, U. and Persson, L., An energy estimate for the complex Monge-Ampère operator, Ann. Polon. Math. 67 (1997), 95–102.
  • Kalina, J., Some remarks on variational properties of inhomogeneous complex Monge-Ampère equation, Bull. Polish Acad. Sci. Math. 31 (1983), 9–13.
  • Klimek, M., Pluripotential Theory, Oxford Univ. Press, Oxford, 1992.
  • Port, S. C. and Stone, C. J., Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.