Arkiv för Matematik

  • Ark. Mat.
  • Volume 23, Number 1-2 (1985), 103-128.

Phragmén-Lindelöf's and Lindelöf's theorems

S. Granlund, P. Lindqvist, and O. Martio

Full-text: Open access

Article information

Source
Ark. Mat., Volume 23, Number 1-2 (1985), 103-128.

Dates
Received: 25 July 1983
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485897448

Digital Object Identifier
doi:10.1007/BF02384420

Mathematical Reviews number (MathSciNet)
MR800175

Zentralblatt MATH identifier
0594.30022

Rights
1985 © Institut Mittag-Leffler

Citation

Granlund, S.; Lindqvist, P.; Martio, O. Phragmén-Lindelöf's and Lindelöf's theorems. Ark. Mat. 23 (1985), no. 1-2, 103--128. doi:10.1007/BF02384420. https://projecteuclid.org/euclid.afm/1485897448


Export citation

References

  • Ahlfors, L., Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, Inc., New York, 1973.
  • Carleman, T., Sur une inégalité différentielle dans la théorie des fonctions analytiques, C. R. Acad. Sci. Paris 196, (1933), 995–997.
  • Gehring, F. W., Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.
  • Granlund, S., Lindqvist, P. and Martio, O., Conformally invariant variational integrals, Trans. Amer. Math. Soc. 277 (1983), 43–73.
  • Granlund, S., Lindqvist, P. and Martio, O., F-harmonic measure in space, Ann. Acad. Sci. Fenn. 7 (1982), 233–247.
  • Granlund, S., Lindqvist, P. and Martio, O., Note on the PWB-method in the non-linear case, (to appear).
  • Haliste, K., Estimates of harmonic measures, Ark. Mat. 6 (1965), 1–31.
  • Hall, T., Sur la mesure harmonique de certains ensembles, Ark. Mat. Astron. Fysik 25 A, 28, (1937), 1–8.
  • Heins, H., Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, Rinehart and Winston, New York, 1962.
  • Kufner, A., John, O. and Fuĉik, S., Function Spaces, Noordhoff Int. Publishing, Leyden, 1977.
  • Lindelöf, E., Sur un principe générale de l'analyse et ses applications à la théorie de la représentation conforme, Acta Soc. Sci. Fenn. 46 (1915).
  • Martio, O., Reflection principle for elliptic partial differential equations and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 179–188.
  • Martio, O. and Rickman, S., Boundary behavior of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 507 (1972), 1–17.
  • Martio, O., Rickman, S. and Väisälä, J., Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 448 (1969), 1–40.
  • Morrey, C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.
  • Mostow, G. D., Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.
  • Nevanlinna, R., Eindeutige analytische Funktionen, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
  • Phragmén, E. and Lindelöf, E., Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage d'un point singulier, Acta Math. 31 (1908), 381–406.
  • Reŝetnjak, Ju. G. (Рецетняк, Ю. Г.Просмрансмбенные омображения с осраниченным искажением, Nauka, Novosibirsk, 1982.
  • Rickman, S., Asymptotic values and angular limits of quasiregular mappings of a ball, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 185–196.
  • Tsuji, M., Potential Theory in Modern Function Theory, Maruzen Co., Tokyo, 1959.
  • Vuorinen, M., On the boundary behavior of locally K-quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 79–95.
  • Vuorinen, M., On the existence of angular limits of n-dimensional quasiconformal mappings, Ark. Mat. 18 (1980), 157–180.
  • Vuorinen, M., Capacity densities and angular limits of quasiregular mappings, Trans. Amer. Math. Soc. 263 (1981), 343–354.