Arkiv för Matematik

  • Ark. Mat.
  • Volume 21, Number 1-2 (1983), 191-203.

Projection estimates for harmonic measure

Bernt Øksendal

Full-text: Open access

Abstract

Stochastic proofs of the Beurling projection theorem and the Hall projection theorem for harmonic measure are given. Some d-dimensional versions (for all d>1) which follow from this

Article information

Source
Ark. Mat., Volume 21, Number 1-2 (1983), 191-203.

Dates
Received: 5 November 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485897014

Digital Object Identifier
doi:10.1007/BF02384309

Mathematical Reviews number (MathSciNet)
MR727343

Zentralblatt MATH identifier
0537.31002

Rights
1983 © Institut Mittag Leffler

Citation

Øksendal, Bernt. Projection estimates for harmonic measure. Ark. Mat. 21 (1983), no. 1-2, 191--203. doi:10.1007/BF02384309. https://projecteuclid.org/euclid.afm/1485897014


Export citation

References

  • Ahlfors, L.: Conformal Invariants. McGraw-Hill 1973.
  • Beurling, A.: Études sur un problème de majoration. Thèse, Uppsala 1933.
  • Duren, P.: Theory of Hpspaces. Academic Press 1970.
  • Fuglede, B.: Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains. In Séminaire de Théorie du Potential Paris, No. 5. Springer Lecture Notes in Math. 814 (1980), 97–115.
  • Hall, T.: Sur la mesure harmonique de certains ensebles. Arkiv Mat. Astr. Fys. 25A (1937). No. 28 (8 pp.).
  • Lyons, T.: Finely holomorphic functions. J. Functional Analysis 37 (1980), 1–18.
  • Port, S. and Stone, C.: Brownian Motion and Classical Potential Theory. Academic Press 1979.
  • Rao, M.: Brownian Motion and Classical Potential Theory. Aarhus Universitet Mat. Inst. Lecture Notes Series No. 47, 1977.