Arkiv för Matematik

  • Ark. Mat.
  • Volume 14, Number 1-2 (1976), 277-287.

Eigenfunction expansions for the Schrödinger operator

Martin Schechter

Full-text: Open access

Abstract

We obtain an eigenfunction expansion for the operator −°+V under assump-tions (1.2)–(1.5) given below.

Article information

Source
Ark. Mat., Volume 14, Number 1-2 (1976), 277-287.

Dates
Received: 22 September 1975
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896477

Digital Object Identifier
doi:10.1007/BF02385841

Mathematical Reviews number (MathSciNet)
MR440219

Zentralblatt MATH identifier
0351.35024

Rights
1976 © Institut Mittag-Leffler

Citation

Schechter, Martin. Eigenfunction expansions for the Schrödinger operator. Ark. Mat. 14 (1976), no. 1-2, 277--287. doi:10.1007/BF02385841. https://projecteuclid.org/euclid.afm/1485896477


Export citation

References

  • Ikebe, T., Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5 (1960), 1–34.
  • Povzner, A. Ja., The expansion of arbitrary functions in terms of eigenfunctions of the operator −Δu+cu, Math. Sb., 32 (1953), 109–156.
  • Shenk, N., Thoe, D., Eigenfunction expansions and scattering theory for perturbations of −Δ, J. Math. Anal. Appl., 36, (1971), 313–351.
  • Goldstein, C., Perturbations of nonselfadjoint operators, I, II., Arch. Rational Mech. Anal., 37 (1970), 268–296, 42 (1971), 380–402.
  • Alsholm, P., Schmidt, G., Spectral and scattering theory for Schrödinger operators, ibid. 40, (1971), 281–311.
  • Schulenberger, J. R., Wilcox, C. H., Eigenfunction expansions and scattering theory for wave propagation problems of classical physics, ibid. 46 (1972), 280–320.
  • Guillot, J. C., Schmidt, G., Spectral and scattering theory for Dirac operators. ibid., 55, (1974), 193–206.
  • Guillot, J. C., Perturbation of the Laplacian by Coulomb like potentials, to appear.
  • Kuroda, S. T., Kato, T., Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields, Edited by F. E. Browder, Springer, 1970, 99–131.
  • Agmon, S., Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa, Serie IV, Vol. 2 (1975), 151–218.
  • Howland, J. S., A perturbation theoretic approach to eigenfunction expansion, J. Functional Analysis., 2 (1968), 1–23.
  • Mochizuki, K., Eigenfunction expansions associated with the Schrödinger operator, Proc. Japan Acad., 43, (1967), 638–643.
  • Faddeev, L. D., Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory, Israel Program for Scientific Translations, Jerusalem, 1965.
  • Thompson, M., Eigenfunction expansions and scattering theory for perturbed elliptic partial differential equations, Comm. Pure Appl. Math., 15 (1972), 499–532.
  • Berezarskii, Ju. M., Expansions in Eigenfunctions of Selfadjoint Operators, American Math. Soc., Providence, 1968.
  • Greiner, P. C., Eigenfunction expansions and scattering theory for perturbed elliptic partial differential operators, Bull. Amer. Math. Soc. 70 (1964), 517–521.
  • Kato, T., Perturbation Theory for Linear Operators, Springer, N. Y., 1966.
  • Schechter, M., Scattering tehory for second order elliptic operators, Ann. Mat. Pura Appl., 105 (1975), 313–331.
  • Schechter, M., Scattering theory for second order elliptic operators of arbitrary order, Comment. Math. Helv., 49 (1974), 84–113.
  • Schechter, M., Discreteness of the singular spectrum for Schrödinger operators, Math. Proc. Cambridge Philos. Soc. 80 (1976), 121–133.
  • Schechter, M., Hamiltonians for singular potentials, Indiana Univ. Math. J., 22 (1972), 483–503.
  • Simon, B., Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971.
  • Lax, P. D., Phillips, R. S., Scattering Theory, Academic Press, N. Y., 1967.