Arkiv för Matematik

  • Ark. Mat.
  • Volume 13, Number 1-2 (1975), 73-77.

Some lacunary conditions for Fourier-Stieltjes transforms

Robert E. Dressler and Louis Pigno

Full-text: Open access

Article information

Source
Ark. Mat., Volume 13, Number 1-2 (1975), 73-77.

Dates
Received: 24 June 1974
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896419

Digital Object Identifier
doi:10.1007/BF02386197

Mathematical Reviews number (MathSciNet)
MR374819

Zentralblatt MATH identifier
0314.42016

Rights
1975 © Institut Mittag-Leffler

Citation

Dressler, Robert E.; Pigno, Louis. Some lacunary conditions for Fourier-Stieltjes transforms. Ark. Mat. 13 (1975), no. 1-2, 73--77. doi:10.1007/BF02386197. https://projecteuclid.org/euclid.afm/1485896419


Export citation

References

  • Dressler, R. E. and Pigno, L. “On Strong Riesz sets,”Colloq. Math. 29 (1974), 157–158.
  • de Leeuw, K. and Katznelson, Y. “The two sides of a Fourier—Stieltjes transform and almost idempotent measures”, Israel J. Math., 8 (1970), 213–229.
  • Mahler, K. “On the greatest prime factor of axm+byn,”Nieuw Archief voor Wiskunde (3), 1 (1953), 113–122.
  • Meyer, Y. “Spectres des mesures et mesures absolument continues,”Studia Math. 30 (1968), 87–99.
  • Meyer, Y.Algebraic Numbers and Harmonic Analysis, North-Holland Publishing Company, Amsterdam, 1972.
  • Pigno, L. “Convolution Products with Small Fourier—Stieltjes transforms” to appear (Illinois J. Math.).
  • Pigno, L. and Saeki, S. “Measures whose transforms vanish at infinity”, Bull. Amer. Math. Soc. 79 (1973), 800–801.
  • Pigno, L. and Saeki, S. Fourier—Stieltjes transforms which vanish at infinity, to appear (Math. Z.).
  • Rudin, W.Fourier Analysis on Groups, Interscience, New York, 1962.
  • Wallen, L. S. “Fourier-Stieltjes transforms tending to zero”, Proc. Amer. Math. Soc. 24 (1970), 651–652.