Annals of Functional Analysis

Inequalities for the extended positive part of a von Neumann algebra related to operator-monotone and operator-convex functions

Trung Hoa Dinh, Oleg E. Tikhonov, and Lidia V. Veselova

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We extend inequalities for operator monotone and operator convex functions onto elements of the extended positive part of a von Neumann algebra. In particular, this provides an opportunity to extend the inequalities onto unbounded positive self-adjoint operators.

Article information

Source
Ann. Funct. Anal., Volume 10, Number 3 (2019), 425-432.

Dates
Received: 27 October 2018
Accepted: 20 December 2018
First available in Project Euclid: 6 August 2019

Permanent link to this document
https://projecteuclid.org/euclid.afa/1565078426

Digital Object Identifier
doi:10.1215/20088752-2018-0040

Mathematical Reviews number (MathSciNet)
MR3989186

Zentralblatt MATH identifier
07089128

Subjects
Primary: 47A63: Operator inequalities
Secondary: 46L10: General theory of von Neumann algebras

Keywords
von Neumann algebra extended positive part operator monotone function operator convex function

Citation

Dinh, Trung Hoa; Tikhonov, Oleg E.; Veselova, Lidia V. Inequalities for the extended positive part of a von Neumann algebra related to operator-monotone and operator-convex functions. Ann. Funct. Anal. 10 (2019), no. 3, 425--432. doi:10.1215/20088752-2018-0040. https://projecteuclid.org/euclid.afa/1565078426


Export citation

References

  • [1] T. H. Dinh and O. E. Tikhonov, On the theory of operator-monotone and operator-convex functions (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 2010, no. 3, 9–14; English translation in Russian Math. (Iz. VUZ) 54 (2010), no. 3, 7–11.
  • [2] A. M. Bikchentaev, On operator-monotone and operator convex functions [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. 2016, no. 5, 70–74; English translation in Russian Math. (Iz. VUZ) 60 (2016), no. 5, 61–65.
  • [3] U. Haagerup, Operator valued weights in von Neumann algebras, I, J. Funct. Anal. 32 (1979), no. 2, 175–206.
  • [4] F. Hansen, An operator inequality, Math. Ann. 246 (1980), no. 3, 249–250.
  • [5] F. Hansen, The fast track to Löwner’s theorem, Linear Algebra Appl. 438 (2013), no. 11, 4557–4571.
  • [6] I. Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), no. 2, 227–232.
  • [7] F. Kraus, Über konvexe Matrixfunktionen, Math. Zeit. 41 (1936), 18–42.
  • [8] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), no. 3, 205–224.
  • [9] K. Löwner, Über monotone Matrixfunktionen, Math. Zeit. 38 (1934), 177–216.
  • [10] H. Osaka, S. D. Silvestrov, and J. Tomiyama, Monotone operator functions on $C^{*}$-algebras, International J. Math. 16 (2005), no. 2, 181–196.
  • [11] G. K. Pedersen and M. Takesaki, The Radon–Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53–87.
  • [12] D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244 (1996), 81–96.
  • [13] M. Takesaki, Theory of Operator Algebras, I, Springer, New York, 1979.
  • [14] M. Takesaki, Theory of Operator Algebras, II, Springer, Berlin, 2003.