Annals of Functional Analysis

Cyclic weighted shift matrix with reversible weights

Peng-Ruei Huang and Hiroshi Nakazato

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We characterize a class of matrices that is unitarily similar to a complex symmetric matrix via the discrete Fourier transform.

Article information

Source
Ann. Funct. Anal., Volume 10, Number 1 (2019), 72-80.

Dates
Received: 14 November 2017
Accepted: 6 April 2018
First available in Project Euclid: 16 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.afa/1547629224

Digital Object Identifier
doi:10.1215/20088752-2018-0009

Mathematical Reviews number (MathSciNet)
MR3899957

Zentralblatt MATH identifier
07045486

Subjects
Primary: 47A12: Numerical range, numerical radius
Secondary: 47B25: Symmetric and selfadjoint operators (unbounded) 15B57: Hermitian, skew-Hermitian, and related matrices

Keywords
discrete Fourier transform cyclic weighted shift matrix complex symmetry

Citation

Huang, Peng-Ruei; Nakazato, Hiroshi. Cyclic weighted shift matrix with reversible weights. Ann. Funct. Anal. 10 (2019), no. 1, 72--80. doi:10.1215/20088752-2018-0009. https://projecteuclid.org/euclid.afa/1547629224


Export citation

References

  • [1] L. Balayan and S. R. Garcia, Unitary equivalence to a complex symmetric matrix: Geometric criteria, Oper. Matrices 4 (2010), no. 1, 53–76.
  • [2] M. T. Chien and H. Nakazato, Singular points of cyclic weighted shift matrices, Linear Algebra Appl. 439 (2013), 4090–4100.
  • [3] M. T. Chien and H. Nakazato, Computing the determinantal representations of hyperbolic forms, Czechoslovak Math. J. 66 (2016), no. 3, 633–651.
  • [4] M. T. Chien, J. Liu, H. Nakazato, and T. Y. Tam, Toeplitz matrices are unitarily similar to symmetric matrices, Linear Multilinear Algebra 65 (2017), no. 10, 2131–2144.
  • [5] M. T. Chien and H. Nakazato, Matrices unitarily similar to symmetric matrices, preprint, http://www.wseas.us/e-library/conferences/2015/Budapest/AMATH/AMATH-11.pdf (accessed 20 November 2018).
  • [6] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358, no. 3 (2006), 1285–1315.
  • [7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, II, Trans. Amer. Math. Soc. 359, no. 8 (2007), 3913–3931.
  • [8] H. L. Gau, M. C. Tsai, and H. C. Wang, Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges, Linear Algebra Appl. 438 (2013), no. 1, 498–513.
  • [9] J. W. Helton and I. M. Spitkovsky, The possible shapes of numerical ranges, Oper. Matrices 6 (2012), no. 3, 607–611.
  • [10] J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007), no. 5, 654–674.
  • [11] K. Lentzos and L. F. Pasley, Determinantal representations of invariant hyperbolic plane curves, Linear Algebra Appl. 556 (2018), 108–130.
  • [12] D. Plaumann, B. Sturmfels, and C. Vinzant, “Computing linear matrix representations of Helton-Vinnikov curves” in Mathematical Methods in Systems, Optimization, and Control, Oper. Theory Adv. Appl. 222, Birkhäuser, Basel, 2012, 259–277.
  • [13] D. Plaumann and C. Vinzant, Determinantal representations of hyperbolic plane curves: An elementary approach, J. Symbolic Comput. 57 (2013), 48–60.
  • [14] M. C. Tsai and P. Y. Wu, Numerical ranges of weighted shift matrices, Linear Algebra Appl. 435 (2011), no. 2, 243–254.