Annals of Functional Analysis

Injection theorem for local Ditkin sets

Antoine Derighetti

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For Figà-Talamanca–Herz algebras Ap(G), 1<p<, of a locally compact group G and a closed subgroup H of G, we prove an injection theorem for local Ditkin sets.

Article information

Source
Ann. Funct. Anal., Volume 7, Number 1 (2016), 96-101.

Dates
Received: 23 April 2015
Accepted: 11 May 2015
First available in Project Euclid: 27 November 2015

Permanent link to this document
https://projecteuclid.org/euclid.afa/1448591837

Digital Object Identifier
doi:10.1215/20088752-3334778

Mathematical Reviews number (MathSciNet)
MR3449342

Zentralblatt MATH identifier
1332.43001

Subjects
Primary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.
Secondary: 43A46: Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.) 43A22: Homomorphisms and multipliers of function spaces on groups, semigroups, etc.

Keywords
abstract harmonic analysis locally compact group $L^{p}$-spaces and other function spaces on groups special sets on groups

Citation

Derighetti, Antoine. Injection theorem for local Ditkin sets. Ann. Funct. Anal. 7 (2016), no. 1, 96--101. doi:10.1215/20088752-3334778. https://projecteuclid.org/euclid.afa/1448591837


Export citation

References

  • [1] J. Delaporte and A. Derighetti, Invariant projections and convolution operators, Proc. Amer. Math. Soc. 129 (2000), no. 5, 1427–1435.
  • [2] A. Derighetti, Quelques observations concernant les ensembles de Ditkin d’un groupe localement compact, Monatsh. Math. 101 (1986), no. 2, 95–113.
  • [3] A. Derighetti, Closed subgroups as Ditkin sets, J. Funct. Anal. 266 (2014), no. 3, 1702–1715.
  • [4] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123.
  • [5] E. Kaniuth and A. T. Lau, Spectral synthesis for $A(G)$ and subspaces of $\mathit{VN}(G)$, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3253–3263.
  • [6] N. Lohoué, Estimations $L^{p}$ des coefficients de représentation et opérateurs de convolution, Adv. Math. 38 (1980), no. 2, 178–221.
  • [7] K. Parthasarathy and N. S. Kumar, Ditkin sets in homogeneous spaces, Studia Math. 203 (2011), no. 3, 291–307.
  • [8] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 2000.