Annals of Functional Analysis

Solutions of nonlinear elliptic problems with lower order terms

Youssef Akdim, Abdelmoujib Benkirane, and Mostafa El Moumni

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give an existence result for strongly nonlinear elliptic equations of the form \[ -{\rm div}(a(x,u,\nabla u))+g(x,u,\nabla u)+H(x,\nabla u) = \mu\ \text{in}\ \Omega, \] where the right hand side belongs to $L^1(\Omega)+W^{-1,p'}(\Omega)$ and $- {\rm div}(a(x,u,\nabla u))$ is a Leray--Lions type operator with growth $|\nabla u|^{p-1}$ in $\nabla u$. The critical growth condition on $g$ is with respect to $\nabla u$ and no growth condition with respect to $u$, while the function $H(x,\nabla u)$ grows as $|\nabla u|^{p-1}$.

Article information

Source
Ann. Funct. Anal., Volume 6, Number 1 (2015), 34-53.

Dates
First available in Project Euclid: 19 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1419001449

Digital Object Identifier
doi:10.15352/afa/06-1-4

Mathematical Reviews number (MathSciNet)
MR3297786

Zentralblatt MATH identifier
1319.35038

Subjects
Primary: 35B45
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems 35J60: Nonlinear elliptic equations

Keywords
Sobolev spaces a priori estimates nonlinear elliptic equation

Citation

Akdim, Youssef; Benkirane, Abdelmoujib; El Moumni, Mostafa. Solutions of nonlinear elliptic problems with lower order terms. Ann. Funct. Anal. 6 (2015), no. 1, 34--53. doi:10.15352/afa/06-1-4. https://projecteuclid.org/euclid.afa/1419001449


Export citation

References

  • A. Alvino and G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri, (Italian) Ricerche Mat. 27 (1978), 413–428.
  • E. Beckenbak and R. Beliman, Inequalities, Springer-Verlag, 1965.
  • A. Benkirane, Approximations de type Hedberg dans les espaces $W\sp mL\log L(\Omega)$ et applications. (French) [Hedberg-type approximations in the spaces $W\sp mL\log L(\Omega)$ and applications], Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 2, 67–78.
  • A. Benkirane and J.P. Gossez, An approximation theorem for higher order Orlicz-Sobolev spaces, Studia Math 92 (1989), 231–255.
  • A. Benkirane and A. Elmahi, An existence theorem form a strongly nonlinear problems in Orlicz space, Nonlinear Anal. 3 (1999), no. 6, 11–24.
  • A. Benkirane and A. Elmahi, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal. 39 (2000), no. 4, 403–411.
  • A. Benkirane, A. Elmahi and D. Meskine, An existence theorem for a class of elliptic problems in $L^1$ , Appl. Math. (Warsaw) 29 (2002), no. 4, 439–457.
  • A. Youssfi, A. Benkirane and M. El Moumni, Bounded solutions of unilateral problems for strongly nonlinear equations in Orlicz spaces, Electron. J. Qual. Theory Differ. Equ. 2013, No. 21, 25pp.
  • A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Poincaré 5 (1988), 347–364.
  • L. Boccardo and T. Gallouët, Nonliner elliptic equations with right hand side measure, Comm. Partial Differential Equations 17 (1992), no. 3-4, 641–655.
  • L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equation having natural growth terms and $L^{1}$ data, Nonlinear Anal. 19 (1992), 573–578.
  • L. Boccardo,T. Gallouët and L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203–223.
  • L. Boccardo, F. Murat and J.P. Puel, Existance of bounded solution for non linear elliptic unilateral problems, Annali Mat. Pura Appl. 152 (1988), 183–196.
  • H. Brezis and W. Strauss, Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan 25, (1973), no. 4, 565–590.
  • T. Del Vecchio, Nonlinear elliptic equations with measure data, Potential Anal. 4 1995), no. 2, 185–203.
  • T. Gallouët and R. Herbin, Existence of a solution to a coupled elliptic system, Appl. Math. Lett. 7 (1994), 49–55.
  • T. Goudon and M. Saad, On a Fokker-Planck equation arising in population dynamics, Rev. Mat. Complut. 11 (1998), 353–372.
  • R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy-viscosity, Nonlinear Anal. T.M.A 28 (1997), 393–417.
  • J.-L. Lions, Mathematical topics in fluid mechanics, incompressible models, Oxford Lecture Series in Math and its Applications 3 Clarendon Press, 1996.
  • G. H. Hardy, Littlewood and G. Polya, Inequalities , Cambrige University Press, Cambrige, 1964.
  • J.-L. Lions, Quelques méthodes de résolution des problème aux limites non lineaires, Dundo, Paris, 1969.
  • V.M. Monetti and L. Randazzo, Existence results for nonlinear elliptic equations with $p$-growth in the gradient, Ricerche Mat. 49 (2000), no. 1, 163–181.
  • V. Radulescu and M. Willem, Elliptic systems involving finite Radon measures, Differential Integral Equations 16 (2003), no. 2, 221–229.
  • A. Porretta, Existence for elliptic equations in $L^{1}$ having lower order terms with natural growth, Portugual. Math. 57 (2000), 179–190.
  • G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann.Mat. Pura Appl. 120 (1979), 159–184.