Annals of Functional Analysis

Some results on $\sigma$-derivations

‎M‎. ‎Hassani‎, ‎S‎. ‎Hejazian, A‎. ‎Hosseini‎, and ‎A‎. ‎Niknam‎

Full-text: Open access

Abstract

‎Let $\mathcal{A}$ and $\mathcal{B}$ be two Banach algebras and let‎ ‎$\mathcal{M}$ be a Banach $\mathcal{B}$-bimodule‎. ‎Suppose that‎ ‎$\sigma:\mathcal{A} \rightarrow \mathcal{B}$ is a linear mapping and‎ ‎$d:\mathcal{A} \rightarrow \mathcal{M}$ is a $\sigma$-derivation‎. ‎We‎ ‎prove several results about automatic continuity of‎ ‎$\sigma$-derivations on Banach algebras‎. ‎In addition‎, ‎we define a‎ ‎notion for m-weakly continuous linear mapping and show that‎, ‎under‎ ‎certain conditions‎, ‎$d$ and $\sigma$ are m-weakly continuous‎. ‎Moreover‎, ‎we prove that if $\mathcal{A}$ is commutative and $\sigma‎: ‎\mathcal{A} \rightarrow \mathcal{A}$ is a continuous homomorphism‎ ‎such that $\sigma^{2} = \sigma$ then $\sigma d \sigma (\mathcal{A})‎ ‎\subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$‎.

Article information

Source
Ann. Funct. Anal., Volume 2, Number 2 (2011), 75- 84.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900196

Digital Object Identifier
doi:10.15352/afa/1399900196

Mathematical Reviews number (MathSciNet)
MR2855288

Zentralblatt MATH identifier
1276.47045

Subjects
Primary: 47B47: Commutators, derivations, elementary operators, etc.
Secondary: 17B40: Automorphisms, derivations, other operators

Keywords
$\sigma$-derivation ‎derivation‎ ‎$m$-weakly continuous‎ ‎linear mapping ‎quasi-nilpotent

Citation

‎Hosseini‎, A‎.; ‎Hassani‎, ‎M‎.; ‎Niknam‎, ‎A‎.; ‎Hejazian, ‎S‎. Some results on $\sigma$-derivations. Ann. Funct. Anal. 2 (2011), no. 2, 75-- 84. doi:10.15352/afa/1399900196. https://projecteuclid.org/euclid.afa/1399900196


Export citation

References

  • F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
  • H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, 2000.
  • A. Hosseini, M. Hassani and A. Niknam, Generalized $\sigma$-derivation on Banach Algebras, Bull. Iranian Math. (to appear).
  • S. Hejazian, H. Mahdavian Rad and M. Mirzavaziri, ($\delta,\varepsilon$)-double deivations on Banach algebras, Ann. Funct. Anal. 1 (2010), 103–111.
  • M. Mirzavaziri and M.S. Moslehian, $\sigma$-derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (2006), no. 1, 65–78.
  • M. Mirzavaziri and M.S. Moslehian, Automatic continuity of $\sigma$-derivations in C*-algebras, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3312–3327.
  • M. Mirzavaziri and M.S. Moslehian, Ultraweak Continuity of $\sigma$-derivations on von Neumann Algebras, Math. Phys. Anal. Geom. 12 (2009), no. 2, 109–115.
  • M. Mirzavaziri and E. Omidvar Tehrani, $\delta$-double derivation on $C^{\ast}$-algebras, Bull. Iranian Math. 35 (2009), no. 1, 147–154.
  • M.P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), no. 3, 435-460.