Annals of Functional Analysis

Stability results for $C^*$-unitarizable groups

Rachid El Harti and Paulo R. Pinto

Full-text: Open access

Abstract

‎We say that a locally compact group $G$ is $C^*$-unitarizable if its‎ ‎full group $C^*$-algebra $C^*(G)$ satisfies Kadison's similarity‎ ‎problem (SP)‎, ‎i.e. every bounded representation of $C^*(G)$ on a‎ ‎Hilbert space is similar to a *-representation‎. ‎We prove that‎ ‎locally compact and unitarizable groups are $C^*$-unitarizable‎. ‎For‎ ‎discrete groups‎, ‎we prove that $C^*$-unitarizable passes to‎ ‎quotients‎. ‎Moreover‎, ‎a given discrete group is $C^*$-unitarizable‎ ‎whenever we can find a normal and $C^*$-unitarizable subgroup with‎ ‎amenable quotient‎.

Article information

Source
Ann. Funct. Anal., Volume 2, Number 2 (2011), 1- 9.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900189

Digital Object Identifier
doi:10.15352/afa/1399900189

Mathematical Reviews number (MathSciNet)
MR2855281

Zentralblatt MATH identifier
1255.46026

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 46L07‎ ‎43A07‎ ‎43A65

Keywords
Unitarizable representation ‎group $C^*$-algebra ‎similarity problem ‎amenable group

Citation

El Harti, Rachid; Pinto, Paulo R. Stability results for $C^*$-unitarizable groups. Ann. Funct. Anal. 2 (2011), no. 2, 1-- 9. doi:10.15352/afa/1399900189. https://projecteuclid.org/euclid.afa/1399900189


Export citation

References

  • M.G. Brin and C.C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985), 485–498.
  • E. Christensen, Similarities of II$_1$ factors with property $\Gamma$, J. Operator Theory 15 (1986), no. 2, 281–288.
  • A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (1978), no. 2, 248–253.
  • J. Dixmier, Les moyennes invariantes dans les semi-groups et leurs applications, Acta Sci. Math. Szeged 12 (1950), 213–227.
  • J.A. Ernest, A new group algebra for locally compact groups, Amer. J. Math. 86 (1964), 467-492.
  • M. Ershov and A. Jaikin-Zapirain, Kazhdan quotients of Golod-Shafarevich groups, ArXiv:0908.3734v1 [math.GR].
  • E. Ehrenpreis and F. Mautner, Uniformly bounded representations of groups, Proc. Nat. Acad. Sci. 41 (1955), 231–233.
  • U. Haagerup, Solution of the similarity problem for cylic representations of $C^*$-algebras, Ann. of Math. (2) 118 (1983), no. 2, 215–240.
  • U. Haagerup, All nuclear $C^*$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319.
  • R.V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600–620.
  • E. Kirchberg, The derivation problem and the similarity problem are equivalent, J. Operator Theory 36 (1996), no. 1, 59–62.
  • B.E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127. American Mathematical Society, Providence, R.I., 1972.
  • P. Jolissaint, Central sequences in the factor associated with Thompson's group $F$, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 4, 1093–1106.
  • N. Monod and N. Ozawa, The Dixmier problem, lamplighters and Burnside groups, J. Funct. Anal. 258 (2010), no. 1, 255–259.
  • G. Pisier: Similarity problems and completely bounded maps, Lecture Notes in Mathematics, 1618. Springer-Verlag, Berlin, 2001.
  • G. Pisier, Are Unitarizable Groups Amenable? In Infinite groups: geometric, combinatorial and dynamical aspects,323–362, Progr. Math., 248, Birkhauser, Basel, 2005. Arxive:math/0405282.
  • M.A. Rieffel, Induced representations of $C^*$-algebras, Advances in Math. 13 (1974), 176–257.