Annals of Functional Analysis

Extension of the refined Jensen's operator inequality with condition on spectra

Jadranka Mićić, Jurica Perić, and ‎Josip Pečarić

Full-text: Open access

Abstract

‎We give an extension of the refined Jensen's operator inequality for‎ ‎$n-$tuples of self-adjoint operators‎, ‎unital $n-$tuples of positive‎ ‎linear mappings and real valued continuous convex functions with‎ ‎conditions on the spectra of the operators‎. ‎We also study the order‎ ‎among quasi-arithmetic means under similar conditions‎.

Article information

Source
Ann. Funct. Anal., Volume 3, Number 1 (2012), 67-85.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900024

Digital Object Identifier
doi:10.15352/afa/1399900024

Mathematical Reviews number (MathSciNet)
MR2903268

Zentralblatt MATH identifier
1263.47020

Subjects
Primary: 47A63: Operator inequalities
Secondary: 47B15: Hermitian and normal operators (spectral measures, functional calculus, etc.)

Keywords
Jensen's operator inequality ‎self-adjoint operator ‎positive linear mapping ‎convex function ‎quasi-arithmetic mean

Citation

Mićić, Jadranka; Pečarić, ‎Josip; Perić, Jurica. Extension of the refined Jensen's operator inequality with condition on spectra. Ann. Funct. Anal. 3 (2012), no. 1, 67--85. doi:10.15352/afa/1399900024. https://projecteuclid.org/euclid.afa/1399900024


Export citation