Annals of Functional Analysis

Coupled coincidence point theorems for nonlinear contractions under c-distance in cone metric‎ ‎spaces

Rakesh Batra and Sachin Vashistha

Full-text: Open access

Abstract

‎In this paper‎, ‎among others‎, ‎we prove the following results:\\ $(1)$‎ ‎Let $(X,d)$ be a complete cone metric space partially ordered by‎ ‎$\sqsubseteq$ and $q$ be a c-distance on $X$‎. ‎Suppose $F‎ : ‎X \times‎ ‎X \to X$ and $g‎ : ‎X \to X$ be two continuous and commuting functions‎ ‎with $F(X \times X)\subseteq g(X)$.\ Let $F$ satisfy mixed‎ ‎g-monotone property and $q(F(x‎, ‎y)‎, ‎F(u‎, ‎v)) \preceq \frac{k}{2}‎ ‎(q(gx‎, ‎gu)+q(gy,gv))$ for some $k \in [0‎, ‎1)$ and all $x‎, ‎y‎, ‎u‎, ‎v‎ ‎\in X$ with $(gx \sqsubseteq gu)$ and $(gy \sqsupseteq gv)$ or $(gx‎ ‎\sqsupseteq gu)$ and $(gy \sqsubseteq gv)$.\ If there exist $x_0‎, ‎y_0 \in X$ satisfying $gx_0 \sqsubseteq F(x_0‎, ‎y_0)$ and $F(y_0‎, ‎x_0) \sqsubseteq gy_0$‎, ‎then there exist $x^*‎, ‎y^*\in X$ such that‎ ‎$F(x^*‎, ‎y^*) = gx^*$ and $F(y^*‎, ‎x^*) = gy^*$‎, ‎that is‎, ‎$F$ and $g$‎ ‎have a coupled coincidence point $(x^*‎, ‎y^*)$.\ $(2)$ If‎, ‎in $(1)$‎, ‎we replace completeness of $(X,d)$ by completeness of $(g(X),d)$ and‎ ‎commutativity‎, ‎continuity of mappings $F$ and $g$ by the condition‎: ‎$(i)$ for any nondecreasing sequence $\{x_n\}$ in $X$ converging to‎ ‎$x$ we have $x_n \sqsubseteq x$ for all $n$.\ $(ii)$ for any‎ ‎nonincreasing sequence $\{y_n\}$ in $Y$ converging to $y$ we have $y‎ ‎\sqsubseteq y_n$ for all $n$‎, ‎then $F$ and $g$ have a coupled‎ ‎coincidence point $(x^*,y^*)$‎.

Article information

Source
Ann. Funct. Anal., Volume 4, Number 1 (2013), 138-148.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399899842

Digital Object Identifier
doi:10.15352/afa/1399899842

Mathematical Reviews number (MathSciNet)
MR3004216

Zentralblatt MATH identifier
1262.54016

Subjects
Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]
Secondary: 46B40‎ ‎54H25‎ 55M20‎

Keywords
Fixed point coincidence point ‎cone metric space ‎c-distance

Citation

Batra, Rakesh; Vashistha, Sachin. Coupled coincidence point theorems for nonlinear contractions under c-distance in cone metric‎ ‎spaces. Ann. Funct. Anal. 4 (2013), no. 1, 138--148. doi:10.15352/afa/1399899842. https://projecteuclid.org/euclid.afa/1399899842


Export citation

References

  • C.T. Aage and J.N. Salunke, Fixed points of $(\psi, \phi)$-weak contractions in cone metric spaces, Ann. Funct. Anal. 2 (2011), no. 1, 59–71.
  • I. Altun, M. Abbas and H. Simsek, A fixed point theorem on cone metric spaces with new type contractivity, Banach J. Math. Anal. 5 (2011), no. 2, 15–24.
  • V. Berinde and E. Karapinar, Quadrupled Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6 (2012), no. 1, 74–89.
  • T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379–1393.
  • Y.J. Cho, Z. Kadelburg, R. Saadati and W. Shatanawi, Coupled fixed point theorems under weak contractions, Discrete Dyn. Nat. Soc. (2012), Article ID 184534, 9 pages.
  • Y.J. Cho, R. Saadati and S. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011), no. 4, 1254–1260.
  • L.G. Huang and X. Zhang, Cone meric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 4, 1468–1476.
  • O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), no. 2, 381–391.
  • A. Kaewcharoen, Common fixed point theorems for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces, Banach J. Math. Anal. 6 (2012), no. 1, 101–111.
  • E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), no. 12, 3656–3668.
  • E. Karapinar, Edelstein type fixed point theorems, Ann. Funct. Anal. 2 (2011), no. 1, 51–58.
  • V. Lakshmikantham and L. Cirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341–4349.
  • L.J. Lin and W.S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complex metric spaces, J. Math. Anal. Appl. 323 (2006), 360–370.
  • J.J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 12, 2205–2212.
  • A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435–1443.
  • K.P.R. Rao, K.R.K. Rao and E. Karapinar, Common coupled fixed point theorems in d-complete topological spaces, Ann. Funct. Anal. 3 (2012), no. 2, 107–114.
  • B. Samet and C. Vetro, Coupled fixed Point, F-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2010), no. 2, 46–56.
  • W. Sintunavarat, Y.J. Cho and P. Kumam, Coupled fixed point theorems for weak contraction mappings under F-invariant set, Abstr. Appl. Anal., 15 pages, doi:10.1155/2012/324874.
  • T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440–458.
  • D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. 163 (1992), 345–392.
  • D. Turkoglu and M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 3, 489–496.
  • I. Vályi, A general maximality principle and a fixed point theorem in uniform spaces, Period. Math. Hungar. 16 (1985), 127–134.
  • K. Wlodarczyk and R. Plebaniak, A fixed point theorem of Subrahmanyam type in uniform spaces with generalized pseudodistances, Appl. Math. Lett. 24 (2011), 325–328.
  • K. Wlodarczyk and R. Plebaniak, Contractivity of Leader type and fixed points in uniform spaces with generalized pseudodistances, J. Math. Anal. Appl. 387 (2012), 533–541.
  • K. Wlodarczyk and R. Plebaniak, Kanan-type contractions and fixed points in uniform spaces, Fixed Point Theory Appl. 2011, 2011:90. doi:10.1186/1687-1812-2011-90.
  • K. Wlodarczyk and R. Plebaniak, Maximality principle and general results of Ekeland and Caristi types without lower semiconinuity assumptions in cone uniform spaces without generalized pseudodistances, Fixed Point Theory Appl. 2010 (2010), Article ID 175453, 35 pages.
  • K. Wlodarczyk and R. Plebaniak, Periodic point, endpoint and convergencr theorems for dissipative set-valued dynamic systems with generalized pseudodistances in cone uniform and uniform spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 864536, 32 pages.