Annals of Functional Analysis

The Bochner integral for measurable sections and its properties

Inomjon Ganiev and Gharib S‎. ‎Mahmuod

Full-text: Open access

Abstract

‎In the present‎ ‎paper we introduce the notion Bochner integral for measurable sections and study some properties such integrals‎. ‎Given necessary and successfully condition for integrability of a‎ ‎measurable section‎. ‎Dominated convergence theorem and analogue of‎ ‎Hille's theorem are proved‎.

Article information

Source
Ann. Funct. Anal., Volume 4, Number 1 (2013), 1-10.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399899831

Digital Object Identifier
doi:10.15352/afa/1399899831

Mathematical Reviews number (MathSciNet)
MR3004205

Zentralblatt MATH identifier
1271.46036

Subjects
Primary: 46G10: Vector-valued measures and integration [See also 28Bxx, 46B22]
Secondary: 46G12‎ 46E40: Spaces of vector- and operator-valued functions

Keywords
Measurable bundle measurable section integral Bochner

Citation

Ganiev, Inomjon; S‎. ‎Mahmuod, Gharib. The Bochner integral for measurable sections and its properties. Ann. Funct. Anal. 4 (2013), no. 1, 1--10. doi:10.15352/afa/1399899831. https://projecteuclid.org/euclid.afa/1399899831


Export citation

References

  • S. Bochner, Integration von Functionen, deren Werte die Elemete eines Vectorraumes sind, Fund. Math. 20 (1933), 262–276.
  • B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304.
  • R.S. Phillips. Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145.
  • C.E. Rickartd Integration in a convex linear topological space, Trans. Amer. Math. Soc. 52 (1942), 498–521.
  • E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, Providence, 1957.
  • K. Yosida Functional Analysis, Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
  • V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.
  • N.N. Vakhania, V.I. Tarieladze and S.A. Chobanyan, Probability Distributions on Banach Spaces, Mathematics and its Applications, 14, D. Reidel Publishing Co., Dordrecht, 1987.
  • S. Schwabik, Topics in Banach Space Integration, Series in Real Analysis, World Scientific Publishing Company, 2005.
  • W. Arendt and C.J.K. Batty, M. Hieber and F. Neubrander, Vectorvalued Laplace Transforms and Cauchy problems, Monographs in Mathematics, 96, Birkh�auser Verlag, Basel, 2001.
  • J. Diestel and J.J. Uhl, Jr.,Vector Measures, American Mathematical Society, Providence, R.I., 1977.
  • N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Wiley Classics Library, John Wiley and Sons Inc., New York, 1988.
  • J. Neumann, On rings of operators III, Ann. Math. 41 (1940), 94–161.
  • A.E. Gutman, Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles, Siberian Adv. Math. 3 (1993), no. 4, 8–40.
  • A.E. Gutman, Banach fiberings in the theory of lattice-normed spaces (Russian), Order-compatible linear operators (Russian), 63–211, 293, Trudy Inst. Mat., 29, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995.
  • I.G. Ganiev, Measurable bundles of lattices and their applications (Russian), Investigations in functional analysis and its applications (Russian), 9–49, “Nauka”, Moscow, 2006.
  • A.G. Kusraev, Measurable bundles of Banach lattices, Positivity 12 (2010), 785–799.
  • A.G. Kusraev, Dominated Operators, Mathematics and and its Applications, Kluwer Academic Publishers, Dordrecht 2000.