Annals of Functional Analysis

Some Banach algebra properties in the Cartesian product of Banach algebras

H. V. Dedania and H. J. Kanani

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For semisimple, commutative Banach algebras $\mathcal A$ and $\mathcal B$, some Banach algebra properties of the Cartesin product $\mathcal A \times \mathcal B$ are characterized in terms of $\mathcal A$ and $\mathcal B$. A couple of results are also proved for non-commutative Banach algebras.

Article information

Source
Ann. Funct. Anal., Volume 5, Number 1 (2014), 51-55.

Dates
First available in Project Euclid: 5 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1391614568

Digital Object Identifier
doi:10.15352/afa/1391614568

Mathematical Reviews number (MathSciNet)
MR3119111

Zentralblatt MATH identifier
1290.46045

Subjects
Primary: 46J05: General theory of commutative topological algebras
Secondary: 46K05: General theory of topological algebras with involution

Keywords
Banach algebra Cartesian product UUNP TAP SEP

Citation

Dedania, H. V.; Kanani, H. J. Some Banach algebra properties in the Cartesian product of Banach algebras. Ann. Funct. Anal. 5 (2014), no. 1, 51--55. doi:10.15352/afa/1391614568. https://projecteuclid.org/euclid.afa/1391614568


Export citation

References

  • S.J. Bhatt and H.V. Dedania, Banach algebras with unique uniform norm , Proc. Amer. Math. Soc. 124 (1996), no. 2, 579–584.
  • F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
  • N. Bourbaki, General Topology: Elements of Mathematics, Springer, Berlin, 1989.
  • E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2009.
  • M.J. Meyer, Submultiplicative norms on Banach algebras, Ph.D. thesis, University of Oregon, 1989.
  • N.H. Shah, Cartesian Product of Banach algebras, M.Phil. Dissertation, Sardar Patel University, 2007.