African Diaspora Journal of Mathematics

Third Order BVPs with $\phi$-Laplacian Operators on $[0,+\infty)$

S. Djebali and O. Saifi

Full-text: Open access

Abstract

This work deals with the existence of multiple positive solutions for a third order boundary value problem with a $\phi$-Laplacian operator on the halfline. The existence results are obtained both for the regular and the singular cases using the fixed point index theory on a suitable cone of a Banach space. The singularity is treated by an approximation technique and sequential arguments. Examples of applications are included to illustrate the existence results.

Article information

Source
Afr. Diaspora J. Math. (N.S.), Volume 16, Number 1 (2013), 1-17.

Dates
First available in Project Euclid: 12 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.adjm/1376312565

Mathematical Reviews number (MathSciNet)
MR3091711

Zentralblatt MATH identifier
1283.34019

Subjects
Primary: 34B15: Nonlinear boundary value problems 34B18: Positive solutions of nonlinear boundary value problems 34B40: Boundary value problems on infinite intervals 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Keywords
Third order halfline positive solution fixed point index regular problem singular problem cone $\phi$-Laplacian

Citation

Djebali, S.; Saifi, O. Third Order BVPs with $\phi$-Laplacian Operators on $[0,+\infty)$. Afr. Diaspora J. Math. (N.S.) 16 (2013), no. 1, 1--17. https://projecteuclid.org/euclid.adjm/1376312565


Export citation

References

  • R.P. Agarwal and D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publisher, Dordrecht, 2001.
  • R.P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, Vol. 141, Cambridge University Press, 2001.
  • C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
  • K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1985.
  • S. Djebali and K. Mebarki, Multiple positive solutions for singular BVPs on the positive half-line. Comput. Math. Appl. 55(12) (2008), 2940–2952.
  • S. Djebali and K. Mebarki, On the singular generalized Fisher-like equation with derivative depending nonlinearity. Appl. Math. Comput. 205(1) (2008), 336–351.
  • S. Djebali and O. Saifi, Positive solutions for singular $\phi$-Laplacian BVPs on the positive half-line. E.J.Q.T.D.E. 56 (2009), 1–24.
  • S. Djebali and O. Saifi, Upper and lower solution method for singular $\phi$-Laplacian BVPs with derivative depending nonlinearity on $[0,+\infty)$. Comm. Appl. Anal. 14(4) (2010), 463–480
  • S. Djebali and O. Saifi, Multiple positive solutions for singular $\phi$-Laplacian BVPs with derivative dependence on $[0,+\infty)$. Dyn. Syst. Appl. 21 (2012), 93–120.
  • G. Han and F. Li, Multiple solutions for some fourth-order boundary value problems. Nonl. Anal., T.M.A. 66(11) (2007), 2591–2603.
  • D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
  • S. Liang and J. Zhang, Positive solutions for singular third-order boundary-value problem with dependence on the first order derivative on the half-line. Acta. Appl. Math. 111(1) (2010), 27–43.
  • B. Yan, D. O'Regan, and R.P. Agarwal, Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals. Acta Appl. Math. 103(1) (2008), 19–57
  • Y. Yang and J. Zhang, Existence of infinitly many mountain pass solutions for some fourth-order boundary value problems with parameter. Nonl. Anal., T.M.A. 71(12) (2009), 6135–6143.
  • Y. Yang and J. Zhang, Nontrvial solutions for some fourth-order boundary value problems with parameters. Nonl. Anal., T.M.A. 70(11) (2009), 3966–3977.