African Diaspora Journal of Mathematics

Functional Implicit Hyperbolic Fractional Order Differential Equations with Delay

S. Abbas, M. Benchohra, and J. J. Nieto

Full-text: Open access

Abstract

In this paper we investigate the existence and uniqueness of solutions for the initial value problems (IVP for short), for some classes of functional hyperbolic differential equations with finite and infinite delay by using some fixed point theorems.

Article information

Source
Afr. Diaspora J. Math. (N.S.), Volume 15, Number 1 (2013), 74-96.

Dates
First available in Project Euclid: 9 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.adjm/1376053760

Mathematical Reviews number (MathSciNet)
MR3091710

Zentralblatt MATH identifier
1278.26007

Subjects
Primary: 26A33: Fractional derivatives and integrals

Keywords
Partial hyperbolic differential equation fractional order left-sided mixed Riemann-Liouville integral mixed regularized derivative solution finite delay infinite delay fixed point

Citation

Abbas, S.; Benchohra, M.; Nieto, J. J. Functional Implicit Hyperbolic Fractional Order Differential Equations with Delay. Afr. Diaspora J. Math. (N.S.) 15 (2013), no. 1, 74--96. https://projecteuclid.org/euclid.adjm/1376053760


Export citation

References

  • S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597-604.
  • S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Comm. Math. Anal. 7 (2009), 62-72.
  • S. Abbas and M. Benchohra, Darboux problem for partial functional differential equations with infinite delay and Caputo's fractional derivative, Adv. Dynam. Syst. Appl. 5 (1) (2010), 1-19.
  • S. Abbas and M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative, Stud. Univ. Babeş-Bolyai Math., 57 (4) (2012), 469-479.
  • S. Abbas, M. Benchohra and A. Cabada, Partial neutral functional integro-differential equations of fractional order with delay, Bound. Value Prob. Vol. 2012 (2012), 128, 15 pp.
  • S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012.
  • S. Abbas, M. Benchohra and G.M. N'Guérékata, Asymptotic stability in nonlinear delay differential equations of fractional order, J. Nonlinear Evolution Equ. Appl. 2012, No. 7, 85-96.
  • S. Abbas and M. Benchohra and J.J. Nieto, Global uniqueness results for fractional order partial hyperbolic functional differential equations. Adv. Difference Equ. 2011, Art. ID 379876, 25 pp.
  • S. Abbas, M. Benchohra and J.J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ. 81 (2012), 1-15.
  • S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal. 15 (2) (2012), 168-182.
  • S. Abbas, M. Benchohra and Y. Zhou, Fractional order partial functional differential inclusions with infinite delay, Proc. A. Razmadze Math. Inst. 154 (2010), 1-19.
  • S. Abbas, M. Benchohra and Y. Zhou, Fractional order partial hyperbolic functional differential equations with state-dependent delay, Int. J. Dynam. Syst. Differ. Equ. 3 (2011), 459-490.
  • W.G. Aiello, H.I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52 (1992), 855–869.
  • O. Arino, K. Boushaba, A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. RWA. 1 (2000), 69–87.
  • J. Belair, Population models with state-dependent delays, Lect. Notes Pure Appl. Maths., Dekker, New York, 131 (1990), 156-176.
  • J. Bélair and M.C. Mackey, Consumer memory and price fluctuations on commodity markets: An intergrodifferential model. J. Dynam. Differential Equations 1 (1989), 299-325.
  • J. Belair, M. C. Mackey, and J. Mahaffy, Age-structured and two delay models for erythropoiesis, Math. Biosciences 128 (1995),
  • Y. Cao, J. Fan, and T.C. Card, The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. TMA 19 (1992), 95-105.
  • F. Chen, D. Sun, and J. Shi, Periodicity in a food-limited population model with toxicants and state-dependent delays. J. Math. Anal. Appl. 288 (2003), 136-146.
  • C. Colijn, M. C. Mackey, Bifurcation and bistability in a model of hematopoietic regulation, SIAM J. Appl. Dynam. Syst. 6 (2007), 378-394.
  • F. Crauste, Delay model of hematopoietic stem cell dynamics: asymptotic stability and stability switch, Math. Model. Nat. Phenom. 4 (2009), 28-47.
  • T. Czlapinski, On the Darboux problem for partial differential-functional equations with infinite delay at derivatives. Nonlinear Anal. 44 (2001), 389–398.
  • T. Czlapinski, Existence of solutions of the Darboux problem for partial differential-functional equations with infinite delay in a Banach space. Comment. Math. Prace Mat. 35 (1995), 111-122.
  • S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg, 2011.
  • A. Domoshnitsky, M. Drakhlin and E. Litsyn, On equations with delay depending on solution. Nonlinear Anal. TMA. 49 (2002), 689-701.
  • R.D. Driver, and M.J. Norrisn, Note on uniqueness for a one-dimentional two-body problem of classical electrodynamics. Ann. Phys. 42 (1964), 347-351.
  • W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46-53.
  • A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  • J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21, (1978),11-41.
  • J. K. Hale and S. Verduyn Lunel, Introduction to Functional -Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
  • F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174 (2005), 201-211.
  • F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysis, Part 7 (Catania, 2000) Nonlinear Anal. TMA. 47 (2001), 4557–4566.
  • F. Hartung, T.L. Herdman, J. Turi. Parameter identification in classes of neutral differential equations with state-dependent delays. Nonlinear Anal. TMA 39 (2000), 305–325.
  • F. Hartung, T. Krisztin, H.-O. Walther, J. Wu, Functional differential equations with state-dependent delays: theory and applications. Handbook of differential equations: ordinary differential equations. Vol. III, 435–545, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2006
  • E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. RWA 7 (2006), 510-519.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  • V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
  • M.C. Mackey, Commodity price fluctuations: price dependent delays and non-linearities as explanatory factors. J. Econ. Theory 48 (1989), 479-59.
  • M.C. Mackey, and J. Milton, Feedback delays and the orign of blood cell dynamics, Comm. Theor. Biol. 1 (1990), 299-372.
  • K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  • M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, 84. Springer, Dordrecht, 2011.
  • R. Qesmi, H.-O. Walther, Center-stable manifolds for differential equations with state-dependent delays. Discrete Contin. Dyn. Syst. 23 (2009), 1009–1033.
  • S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • K. Schumacher, Existence and continuous dependence for differential equation with unbounded delay Arch. Rational Mech. Anal (1978), 315-355.
  • V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010.
  • A. N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13-19.
  • A. N. Vityuk and A. V. Mykhailenko, On a class of fractional-order differential equation, Nonlinear Oscil. 11 (2008), 307-319.
  • A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (2011), 391-401.
  • H.-O. Walther, Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays. J. Dynam. Differential Equations 22 (2010), 439–462.