African Diaspora Journal of Mathematics

Integration of Conformal Jacobi Fibrations and Prequantization of Poisson Fibrations

A. Wade

Full-text: Open access

Abstract

We show that integrable conformal Jacobi fibrations are in onetoone correspondence with sourcesimply connected fibered conformal contact groupoids. We also prove that prequantizable Poisson fibrations give rise to Jacobi fibrations. In addition, sourcesimply connected symplectic groupoids associated to prequantizable and integrable Poisson fibrations are also prequantizable.

Article information

Source
Afr. Diaspora J. Math. (N.S.), Volume 14, Number 2 (2012), 187-196.

Dates
First available in Project Euclid: 31 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.adjm/1375293545

Mathematical Reviews number (MathSciNet)
MR3093243

Zentralblatt MATH identifier
1288.53078

Subjects
Primary: 53D17: Poisson manifolds; Poisson groupoids and algebroids 53D50: Geometric quantization 55R05: Fiber spaces

Keywords
Poisson structure Jacobi structure groupoid prequantization geometric quantization

Citation

Wade, A. Integration of Conformal Jacobi Fibrations and Prequantization of Poisson Fibrations. Afr. Diaspora J. Math. (N.S.) 14 (2012), no. 2, 187--196. https://projecteuclid.org/euclid.adjm/1375293545


Export citation

References

  • A. Banyaga, Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77 (2002), 383–398.
  • O. Brahic and R. L. Fernandes, Poisson fibrations and fibered symplectic groupoids. Poisson geometry in mathematics and physics, 41‚Äì-59, Contemp. Math., 450 Amer. Math. Soc., Providence, RI, 2008
  • D. Chinea, J. C. Marrero, and M. de León. Prequantizable Poisson manifolds and Jacobi structures. J. Phys. A, 29 (1996) 6313–6324.
  • M. Crainic, Prequantization and Lie brackets. Journal of Symplectic Geometry, 2 (2005) 579–602.
  • M. Crainic and R. L. Fernandes, Integrability of Lie brackets. Ann. of Math. 157 (2003) 575–620.
  • M. Crainic and C. Zhu, Integrability of Jacobi structure, Ann. Inst. Fourier, 57 (2007), no. 4, 1181–1216
  • P. Dazord Intégration d'algèbres de Lie locales et groupoïdes de contact C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 959–964.
  • Y. Kerbrat and Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de Lie. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 81–86.
  • B. Kostant, Quantization and unitary representations. I. Prequantization. In Lectures in modern analysis and applications, III, pages 87–208. Lecture Notes in Math., Vol. 170. Springer, Berlin, 1970.
  • E. Lerman, Contact fiber bundles, J. Geom. Phys. 49 (2004), no. 1, 52–66.
  • H. C. Lee A kind of even-dimensional differential geometry and its application to exterieur calculus Amer. J. Math. 65 (1943). 433–438.
  • M. de Leon, J. C. Marrero, E. Padrón, On the geometric quantization of Jacobi manifolds, J. Math. Phys. 38 (1997), 6185–6213.
  • A. Lichnerowicz Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), 453‚Äì-488.
  • K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, volume 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.
  • K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoids. Publ. Res. Inst. Math. Sci., 24 (2008), 121–140.
  • J.-M. Souriau, Quantification géométrique, in Physique quantique et géométrie (Paris, 1986), Travaux en Cours, Vol. 32 (1988), 141–193. Hermann, Paris.
  • I. Vaisman, On the geometric quantization of Poisson manifolds. J. Math. Phys., 32 (1991), 3339–3345.
  • I Vaisman, On some quantizable generalized structures, An. Univ. Vest Timi≈ü. Ser. Mat.-Inform. 48 (2010), 275–284.
  • A. Wade. Poisson fiber bundles and coupling Dirac structures Ann. Global Anal. Geom., 33 (2008), 207‚Äì-217.
  • A. Weinstein and P. Xu. Extensions of symplectic groupoids and quantization. J. Reine Angew. Math., 417 (1991), 159–189.
  • A. Weinstein and M. Zambon, Variations on prequantization. In Travaux mathématiques. Fasc. XVI, Trav. Math., XVI, pages 187–219. Univ. Luxemb., Luxembourg, 2005.
  • M. Zambon and C. Zhu, On the geometry of prequantization spaces, J. Geom. Phys. 57 (2007), 2372–2397.