African Diaspora Journal of Mathematics

Fractional Integro-differential Equations with State-Dependent Delay on an Unbounded Domain

M. Benchohra and S. Litimein

Full-text: Open access


We are concerned with the existence of solutions for fractional integro-differential equations with state-dependent delay on an infinite interval. Our results are based on Schauder's fixed point theorem combined with the diagonalization process.

Article information

Afr. Diaspora J. Math. (N.S.), Volume 12, Number 2 (2011), 13-25.

First available in Project Euclid: 13 October 2011

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Pseudo almost automorphic solutions Integro-differential equation integral resolvent family mild solution fixed point Diagonalization process


Benchohra, M.; Litimein , S. Fractional Integro-differential Equations with State-Dependent Delay on an Unbounded Domain. Afr. Diaspora J. Math. (N.S.) 12 (2011), no. 2, 13--25.

Export citation


  • R.P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), 235-244.
  • R.P. Agarwal and D. O'Regan, Infinite Interval Problems for Difference and Integral Equations, Kluwer Academic Publisher Dordrecht, 2001.
  • A. Arara, M. Benchohra, N. Hamidi and J.J. Nieto, Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72 (2010), 580-586.
  • W. Arendt, C. Batty, M., Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96 Birkhauser, Basel, 2001.
  • S. Baghli and M. Benchohra, Uniqueness results for partial functional differential equations in Fréchet spaces, Fixed Point Theory 9 (2) (2008), 395-406.
  • S. Baghli and M. Benchohra, Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces, Georgian Math. J. 17 (3) (2010), 423-436.
  • S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23 (1&2) (2010), 31-50.
  • S. Baghli, M. Benchohra and G. N'Guérékata, Global results for functional evolution inclusions with state-dependent delay, J. Nonlinear Evo. Equ. Appl. (to appear).
  • V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leiden, 1976.
  • M. Benchohra and S. Litimein, A global uniqueness result for abstract integral equations of Volterra type in Banach spaces, Commun. Appl. Nonlinear Anal. 18 (2011), 37-44.
  • C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay: a survey. Nonlinear Anal. 4 (1980), 831-877.
  • C. Cuevas, J.-C. de Souza, S-asymptotically w-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), 865-870.
  • C. Cuevas, J.-C. de Souza, Existence of S-asymptotically w-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal. 72 (2010), 1683-1689.
  • M. Frigon and A. Granas, Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec, 22 (2) (1998), 161-168.
  • A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  • K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.
  • H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland, Mathematical Studies, 108, North-Holland, Amsterdam, 1985.
  • J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
  • E. Hernández, R. Sakthivel, Rathinasamy and A. Tanaka; Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations 2008 (2008) no. 28, 1-11.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, 1991.
  • A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  • C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl. 243, (2000), 278-292.
  • C. Lizama and J. Sánchez, On perturbation of $k$-regularized resolvent families, Taiwan. J. Math., 7, (2003), 217-227.
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • J. Prüss, Evolutionary Integral Equations and Applications Monographs Math. 87, Bikhäuser Verlag, 1993
  • R.-N. Wang and D.-H. Chen, On a class of retarded integro-differential equations with nonlocal initial conditions, Comput. Math. Appl. 59 (2010), 3700-3709.
  • K. Yosida, Functional Analysis, 6$^{th}$ edn. Springer-Verlag, Berlin, 1980.