## Advances in Differential Equations

- Adv. Differential Equations
- Volume 19, Number 7/8 (2014), 693-724.

### Existence and regularity for elliptic equations under $p,q$-growth

Giovanni Cupini, Paolo Marcellini, and Elvira Mascolo

#### Abstract

Under general $p,q$-growth conditions, we prove that the Dirichlet problem \begin{equation*} \left\{ \begin{array}{ll} \displaystyle \sum_{i=1}^{n}\frac{\partial }{\partial x_{i}}a^{i}(x,Du)=b(x) & \quad \text{in}\,\Omega , \\ u=u_{0} & \quad \text{on}\,\partial \Omega \end{array} \right. \end{equation*} has a weak solution $u\in W_{\mathrm{loc}}^{1,q} \Big ( \Omega \Big ) $ under the assumptions $ 1 < p\leq q\leq p+1$ and $q < p\tfrac{n-1}{n-p}. $ More regularity applies. Precisely, this solution is also in the class $W_{ \text{loc}}^{1,\infty }(\Omega )\cap {W_{\text{loc}}^{2,2}(\Omega )}$.

#### Article information

**Source**

Adv. Differential Equations, Volume 19, Number 7/8 (2014), 693-724.

**Dates**

First available in Project Euclid: 6 May 2014

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1399395723

**Mathematical Reviews number (MathSciNet)**

MR3252899

**Zentralblatt MATH identifier**

1305.35041

**Subjects**

Primary: 35J25: Boundary value problems for second-order elliptic equations 35B65: Smoothness and regularity of solutions

#### Citation

Cupini, Giovanni; Marcellini, Paolo; Mascolo, Elvira. Existence and regularity for elliptic equations under $p,q$-growth. Adv. Differential Equations 19 (2014), no. 7/8, 693--724. https://projecteuclid.org/euclid.ade/1399395723