Advances in Differential Equations

Existence and regularity results for nonlinear elliptic equations with measure data

T. Del Vecchio and M. R. Posteraro

Full-text: Open access

Abstract

In this paper we prove some existence and regularity results for equations of the type $- \text{div}\, (a(u,u,\Delta u)+ K(x,u)) +H(x,\Delta u) =f $, in a bounded open set $\Omega$, $u=0 $ on $ \partial \Omega$, where $a$, $K$ and $H$ are Caratheodory functions and $f$ is a Radon measure.

Article information

Source
Adv. Differential Equations, Volume 1, Number 5 (1996), 899-917.

Dates
First available in Project Euclid: 25 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.ade/1366896024

Mathematical Reviews number (MathSciNet)
MR1392010

Zentralblatt MATH identifier
0856.35044

Subjects
Primary: 35J65: Nonlinear boundary value problems for linear elliptic equations
Secondary: 35B65: Smoothness and regularity of solutions 35R05: Partial differential equations with discontinuous coefficients or data

Citation

Del Vecchio, T.; Posteraro, M. R. Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differential Equations 1 (1996), no. 5, 899--917. https://projecteuclid.org/euclid.ade/1366896024


Export citation