2000 Multiple solutions of conformal metrics with negative total curvature
Kuo-Shung Cheng, Chang-Shou Lin
Adv. Differential Equations 5(10-12): 1253-1288 (2000). DOI: 10.57262/ade/1356651223

Abstract

In this paper, we consider the Gaussian curvature equation \begin{equation}{\label{eq:01}} {\Delta} u+K(x)e^{2u}=0 \quad \mbox{in} \ {{\bf R}}^2 , \end{equation} where ${\Delta}=\sum_{i=1}^{2}\frac{\partial^2}{\partial x_i^2}$ is the Laplace operator in ${{\bf R}}^2$. $K(x)$ is always assumed to be of one sign for $|x|$ large. For each $K$, we introduce $\alpha_1=\alpha_1(K)$ by \begin{equation} \alpha_1=\sup \{\alpha \in {{\bf R}} : \int_{{{\bf R}}^2} |K(x)|(1+|x|^2)^{\alpha}\,dx <+{\infty} \} . \tag*{(0.1)} \end{equation} Suppose that $\alpha_1>0$, $K(x)$ is positive somewhere in ${{\bf R}}^2$ and satisfies \begin{equation} \int_{{{\bf R}}^2}K(x)\,dx <0 . \tag*{(0.2)} \end{equation} We prove that there exists $0 <\alpha_0\leq\alpha_1$ such that for any given $\alpha \in (0,\alpha_0)$, there exist at least two solutions of (0.1) with $-2\pi \alpha$ as their total curvature.

Citation

Download Citation

Kuo-Shung Cheng. Chang-Shou Lin. "Multiple solutions of conformal metrics with negative total curvature." Adv. Differential Equations 5 (10-12) 1253 - 1288, 2000. https://doi.org/10.57262/ade/1356651223

Information

Published: 2000
First available in Project Euclid: 27 December 2012

zbMATH: 1024.53024
MathSciNet: MR1785675
Digital Object Identifier: 10.57262/ade/1356651223

Subjects:
Primary: 53C21
Secondary: 35J60 , 53A30

Rights: Copyright © 2000 Khayyam Publishing, Inc.

JOURNAL ARTICLE
36 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.5 • No. 10-12 • 2000
Back to Top