Acta Mathematica

A complex tensor calculus for Kähler manifolds

P. R. Garabedian and D. C. Spencer

Full-text: Open access

Article information

Source
Acta Math., Volume 89 (1953), 279-331.

Dates
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485892013

Digital Object Identifier
doi:10.1007/BF02393011

Mathematical Reviews number (MathSciNet)
MR63119

Zentralblatt MATH identifier
0052.38903

Rights
1953 © Almqvist & Wiksells Boktryckeri AB

Citation

Garabedian, P. R.; Spencer, D. C. A complex tensor calculus for Kähler manifolds. Acta Math. 89 (1953), 279--331. doi:10.1007/BF02393011. https://projecteuclid.org/euclid.acta/1485892013


Export citation

References

  • S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, Journ. für die reine u. angew. Math., 169 (1933), 1–42 and 172 (1934), 89–128.
  • S. Bergman and M. Schiffer, Kernel functions and conformal maps, Compositio Math., 8 (1950).
  • P. Bidal and G. de Rham, Les formes différentielles harmoniques, Comm. Math. Helvetici, 19 (1946), 1–49.
  • S. Bochner, On compact Kähler manifolds, Journ. Ind. Math. Soc., XI (1947), Nos. 1 and 2.
  • Functions of several complex variables, Mimeographed Lectures, Princeton University (1950).
  • E. Calabi and D. C. Spencer, Completely integrable almost complex manifolds, Annals of Math. (to appear).
  • G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Annals of Math. (2) 56 (1952), 128–156.
  • P. R. Garabedian, A new formalism for functions of several complex variables, Journal d'Analyse Mathématique 1 (1951), 59–80.
  • , A Green's function in the theory of functions of several complex variables, Annals of Math. (2) 55 (1952), 19–33.
  • P. R. Garabedian and D. C. Spencer, Complex boundary value problems, Technical Report No. 16, Stanford University, California (April 27, 1951).
  • W. V. D. Hodge, Harmonic integrals, Cambridge Univ. Press (1941).
  • , A Dirichlet's problem for harmonic functionals, with applications to analytic varieties, Proc. London Math. Soc. (2), 36 (1934), 257–303.
  • K. Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory), Annals of Math., 50 (1949), 587–664.
  • G. de Rham and K. Kodaira, Harmonic integrals, Mimeographed Lectures, Institute for Advanced Study (1950).
  • M. Schiffer and D. C. Spencer, Functionals of finite Riemann surfaces, Princeton Mathematical Series, vol. 16.
  • A. Weil, Sur la théorie des formes différentielles attachées à une variété analytique complexe, Comment. Math. Helvetici, 20 (1947), 110–116.
  • H. Weyl, Orthogonal projection in potential theory, Duke Math. Journal (1940), 411–444.