Acta Mathematica

Analytic capacity and differentiability properties of finely harmonic functions

Alexander M. Davie and Bernt Øksendal

Full-text: Open access

Article information

Acta Math., Volume 149 (1982), 127-152.

Received: 18 April 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1982 © Almqvist & Wiksell


Davie, Alexander M.; Øksendal, Bernt. Analytic capacity and differentiability properties of finely harmonic functions. Acta Math. 149 (1982), 127--152. doi:10.1007/BF02392352.

Export citation


  • — A theorem in fine potential theory and applications to finely holomorphic functions. J. Funct. Anal., 37 (1980), 19–26.
  • Marshall, D., Removable sets for bounded analytic functions. In Investigations in Linear Operators and the Theory of Functions (99 unsolved problems in linear and complex analysis). Zapiski Nauk, seminar LOMI Vol. 81 (1978), 202–205. Ed.: N. K. Nikolski, V. P. Havin and S. V. Hruscev.
  • Mizuta, T., Fine differentiability of Riesz potentials. Hiroshima Math. J., 8 (1978), 505–514.
  • Vitushkin, A. G., The analytic capacity of sets in problems of approximation theory. Uspehi Mat. Nauk, 22 (1967), 141–199 (=Russian Math. Surveys, 22 (1967), 139–200).
  • Zalcman, L., Analytic capacity and rational approximation. Springer Lecture Notes in Mathematics, 50. Springer-Verlag, 1968.